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Abstracts of talks



Elements with given index in
bicyclic biquadratic number fields

Tímea Arnóczki

Finding primitive algebraic integers with given index in algebraic num-
ber fields is an important topic of algebraic number theory. It is closely
related to monogeneity of algebraic number fields, since an element
generates a power integral basis if and only if its index equals 1. This
problem is equivalent to solving a certain type of diophantine equa-
tions, the so-called index form equations. It is known that index form
equations have finitely many solutions, consequently there exist only
finitely many elements with given index apart from translation by ra-
tional integers.

Algebraic number fields Q(
√
m,
√
n), where m and n are distinct,

square-free rational integers, are called bicyclic biquadratic number
fields. Monogeneity of these fields have been studied by several au-
thors, for example T. Nakahara, I. Gaál, A. Pethő, M. Pohst, G. Nyul,
B. Jadrijević. Most of these results concentrate on the field index and
the existence of power integral bases.

In my talk I give necessary and sufficient conditions for the exis-
tence of elements with index A in totally complex bicyclic biquadratic
number fields, where A ≤ 10 or A is a prime, and determine all these
elements. Our proof is based on the special structure of the index form
in bicyclic biquadratic number fields which, together with further ob-
servations, makes it possible to completely solve our multiparametric
index form equations. Using a lemma of T. Nagel I also show that
there are infinitely many totally complex bicyclic biquadratic fields
containing elements with index A.
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On polynomial values of sums of
products of consecutive integers

András Bazsó

(joint work with Attila Bérczes, Lajos Hajdu, Florian Luca)

For k = 0, 1, 2, . . . put

fk(x) =
k∑
i=0

i∏
j=0

(x+ j).

In the talk we study diophantine equations involving fk(x). Among
other things we present effective and ineffective finiteness results for
the equation

fk(x) = g(y),

where g(x) ∈ Q[x] is an arbitrary polynomial, and k ≥ 3.

On the distribution of
polynomials with bounded heights

Csanád Bertók, Lajos Hajdu, Attila Pethő

We provide an asymptotic expression for the probability that a ran-
domly chosen polynomial with given degree, having integral coefficients
bounded by some B, has a prescribed signature. We also give certain
related formulas and numerical results along this line. Our theorems
are closely related to earlier results of Akiyama and Pethő, and also
yield extensions of recent results of Dubickas and Sha.
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Hermite-Dickson’s theorem revisited

Rachid Boumahdi

Hermite-Dickson criteria for a polynomial f(x) with coefficients in Fq
to be a permutation polynomial involves the condition that f(x) = 0
has a unique solution in the field and also conditions on the powers f e

of f for e = 1, . . . , q − 2. Carlitz and Lutz modified this criteria by
suppressing the first condition and keeping the other conditions but
for e = 1, . . . , q−1. Here we revisit this criteria and give a very simple
proof of it. The talk ends with questions relative to the powers of a
permutation polynomial.

Best estimations for dispersion
of special ratio block sequences

József Bukor, Peter Csiba

For X = {x1 < x2 < · · ·} ⊂ N let

Xn =
(x1
xn
,
x2
xn
, · · · , xn

xn

)
be the nth term of the ratio block sequence (Xn).

Let

D(Xn) = max
{x1
xn
,
x2 − x1
xn

, · · · , xn − xn−1
xn

}
be the maximum distance between two consecutive terms in Xn.

In this talk we study the behavior of dispersion

D(X) = lim inf
n→∞

D(Xn)

of special types of sequences.
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Some Congruences for Numbers of Ramanujan

Mehmet Cenkci

In Chapter 3 of his second notebook, Ramanujan defined numbers
a(n, k) such as a(2, 0) = 1, and for n ≥ 2

a(n+ 1, k) = (n− 1)a(n, k − 1) + (2n− 1− k)a(n, k),

and a(n, k) = 0 when k < 0 or k > n− 2. Howard showed that a(n, k)
can be expressed in terms of Stirling numbers of the first kind and
associated Stirling numbers of the second kind. Using these relations
we obtain some congruences for the numbers a (n, k).

References

[1] B.C. Berndt, R.J. Evans, B.M. Wilson, Chapter 3 of Ramanujan’s
second notebook, Adv. Math. 49 (1983) 123–169.

[2] F.T. Howard, Explicit formulas for numbers of Ramanujan,
Fibonacci Quart. 24 (1986) 168–175.

The Adjacency-Jacobsthal-Hurwitz
Sequences in Groups

Ömür Deveci, Erdal Karaduman

In [1], Deveci and Aküzüm defined the adjacency-Jacobsthal-Hurwitz
sequences of the first and second kind. In this work, firstly we produce
the cyclic groups from the multiplicative orders of the generating matri-
ces of the adjacency-Jacobsthal-Hurwitz sequences of the first and sec-
ond kind when read modulo λ and we study the adjacency-Jacobsthal-
-Hurwitz sequences of the first and second kind modulo λ. Then, we
give the relationship between the orders of the cyclic groups obtained
and the periods of the adjacency-Jacobsthal-Hurwitz sequences of the

13



first and second kind modulo λ. Further, we extend the adjacency-
-Jacobsthal-Hurwitz sequences of the first and second kind to groups
and then we examine these sequences in the finite groups in detail.

Reference

[1] O. Deveci and Y. Aküzüm, The Adjacency-Jacobsthal-Hurwitz
Type Numbers, International Conference on Advances in Natural
and Applied Sciences ICANAS, 2017, is accepted.

Evaluation of Euler-like sums
via Hurwitz zeta values

Ayhan Dil

In this talk we collect two generalizations of harmonic numbers (namely
generalized harmonic numbers and hyperharmonic numbers) under a
roof. Recursion relations, closed form evaluations, generating functions
of this unified extension are obtained. In the light of this notion we
evaluate some particular values of Euler sums in terms of odd zeta
values.

On the polynomial part of a
restricted partition function

Karl Dilcher

(joint work with Christophe Vignat)

We prove an explicit formula for the polynomial part of a restricted par-
tition function, also known as the first Sylvester wave. This is achieved
by way of some identities for higher-order Bernoulli polynomials, one
of which is analogous to Raabe’s well-known multiplication formula
for the ordinary Bernoulli polynomials. As a consequence of our main
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result we obtain an asymptotic expression of the first Sylvester wave
as the coefficients of the restricted partition grow arbitrarily large.

Polynomial root separation

Andrej Dujella

(joint work with Yann Bugeaud, Tomislav Pejković, Bruno Salvy)

We consider the question how close to each other can be two distinct
roots of an integer polynomial P (X) of degree d. We compare the
distance between two distinct roots of P (X) with its height H(P ),
defined as the maximum of the absolute values of its coefficients. The
first result in this direction in due to Mahler, who proved that the
distance is > c(d)H(P )−d+1, for an explicit constant c(d), depending
only on d. We will present some results in the opposite direction,
obtained by constructing explicit parametric families of polynomials
having two roots very close to each other. We also consider the absolute
variant of the problem (the minimal nonzero distance between absolute
values of the roots), and give tight bounds for the case of real roots.

A sequence adapted from the movement of the
center of mass of two planets in solar system

Jana Fialová

In this paper we derive a sequence from a movement of center of mass
of arbitrary two planets in some solar system, where the planets circle
on concentric circles in a same plane. We choose a sequence of times,
for which we have a sequence of points on a trajectory of the center
of mass, count distances of the points to the origin and calculate a
distribution function of a sequence of the distances.
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The structure of weighted densities

Ferdinánd Filip, József Bukor, János T. Tóth

Density is one of the possibilities to measure how large a subset of
the set of positive integers is. The best known type of densities are
weighted densities.

Let f :N→ (0,∞) be a weight function such that the conditions

∞∑
n=1

f(n) =∞ ,

lim
n→∞

f(n)∑n
i=1 f(i)

= 0

are satisfied.
For A ⊂ N and n ∈ N denote Af (n) =

∑
a∈A,a≤n f(a) and define

df (A) = lim inf
n→∞

Af (n)
Nf (n)

df (A) = lim sup
n→∞

Af (n)
Nf (n)

the lower and upper f -densities of A, respectively.
We present relations between weighted densities determined by

several weight functions.

Annihilators of the minus class
group of an imaginary cyclic field

Pavel Francírek

Let ` be an odd prime and K0/Q be a cyclic extension of `-power
degree [K0 : Q] = `k. Let F be an imaginary cyclic field whose degree
[F : Q] is not divisible by `, so the compositum L0 = FK0 is cyclic,
too. We suppose that ` does not ramify in L0/Q. We further assume
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that conductors of F and K0 are relatively prime. We shall denote the
minus part of `-Sylow subgroup of ideal class group of L0 by A−L0 .

We begin with a module generated by certain Gauss sums. Dis-
tribution relations satisfied by these sums allow us to work with some
Sinnott module instead. It is more convenient, since we can provide
a description of linear forms on this Sinnott module. This allows us to
prove that a nontrivial root of a modified Gauss sum belongs to L0.
This fact can be eventually used to construct a new annihilator of A−L0 ,
that is an annihilator living outside of the usual Sinnott Stickelberger
ideal.

On Mordell’s equation

István Gaál

Let k be an integer and consider the solutions x, y ∈ Z of the classical
equation

x3 + k = y2 .

We survey on the known results on the equation and explain the exist-
ing methods to solve it. We detail a method of K. Wildanger which was
suitable to solve the equation up to |k| < 107. Recently M.E. Pohst,
M. Pohst and I. Gaál gave an improvement of Wildanger’s method
which makes it possible to solve the equation up to |k| < 1015. We
give some details of the new method and give interesting numerical
examples.
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Generalization of the non-local
derangement identity and applications

to multiple zeta-type series

Marian Genčev

We present a transformation concerning the general K-fold finite sums
of the form ∑

N≥n1≥···≥nK≥1

1
bnK

·
K−1∏
j=1

1
anj

,

where (K,N) ∈ N2 and {an}∞n=1, {bn}∞n=1 are appropriate real se-
quences. In the application part of the talk, we apply the developed
transformation to a special parametric multiple zeta-type series that
generalizes the well-know formula ζ?({2}K , 1) = 2ζ(2K + 1), K ∈ N.
As a corollary of our parametric results, we also present several sum
formulas involving multiple zeta-star values.

Counting twin primes

Islem Ghaffor

In this talk we give two new formulae which count exactly the quantity
of twin primes not greater than a certain given value 36n2 + 60n+ 21
and p2n − 3. We use in these formulae the arithmetic progressions
and the cardinality. In the first formula, we do not need to make
any “primality” test and in the second formula we use the n-th prime
number and we show the relation between counting primes and twin
primes. We would also say that we have produced new algorithms to
make such count.
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On the divergence of two subseries ofP 1
p

and a theorem of de la Vallée-Poussin

Sudhaamsh Mohan Reddy Guntipally

Let K = Q(
√
d) be a quadratic field with discriminant d. It is shown

that
∑

( d
p
)=+1, p prime

1
p and

∑
( d
q
)=−1, q prime

1
q are both divergent. Two dif-

ferent approaches are given to show the divergence: one using the
Dedekind Zeta function and the other by Tauberian methods. It is
shown that these two divergences are equivalent. Finally, it is shown
that the divergence is equivalent to Ld(1) 6= 0 (de la Vallée-Poussin’s
Theorem).

S-parts of values of binary
forms and decomposable forms

Kálmán Győry

(joint work with Yann Bugeaud, Jan-Hendrik Evertse)

Let S = {p1, . . . , ps} be a finite set of primes. The S-part [a]S of
a non-zero integer a is the largest positive divisor of a composed of
primes from S. Let F (X,Y ) be a binary form with integer coefficients
of degree n at least 3 and non-zero discriminant D(F ) and assume F
has no non-trivial rational zeros. Then one has the following:

(i) [F (x, y)]S �F,S,ε |F (x, y)|(2/n)+ε for all primitive (x, y) ∈ Z2 and
all θ > 0;

(ii) There are infinitely primes p such that with S = {p} one has
[F (x, y)]S �F |F (x, y)|2/n for infinitely many primitive pairs
(x, y) ∈ Z2;

(iii) Denote by N(F, S, θ,B) the number of primitive pairs (x, y) ∈ Z2
such that [F (x, y)]S ≥ |F (x, y)|θS and max(|x|, |y|) ≤ B. For p ∈ S
let pgp be the largest power of p dividing the discriminant of F
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and let s′ be the number of primes p ∈ S such that F (x, y) = 0
(mod pgp+1) has a non-trivial solution. Assume s′ > 0 and let
0 < θ < 1

n . Then there are positive constants c1, c2 such that

c1B
2−nθ(logB)s

′−1 ≤ N(F, S, θ,B) ≤ c2B2−nθ(logB)s
′−1.

Part (i) is a simple consequence of the p-adic Roth’s theorem,
(of course with ineffective implied constant), part (ii) uses geometry
of numbers, and part (iii) uses a recent lattice-point counting result
of Barroero and Widmer. There is also a weaker version of (i) with
effective implied constant, giving [F (x, y)]S ≤ c1|F (x, y)|1−c2 for all
non-zero primitive (x, y) ∈ Z2, with effectively computable c1, c2. This
uses of course linear forms in logs.

We have also some weaker results for decomposable forms in more
than two variables instead of binary forms.

On the irrationality of infinite
series of reciprocals of square roots

Jaroslav Hančl

(joint work with Radhakrishnan Nair)

Let {an}∞n=1 be a non-decreasing sequence of positive integers. In the
spirit of the Erdős we give some conditions on {an}∞n=1 such that the
number

∑∞
n=1

1√
an

is irrational.

On the equation Ln . . . Ln+k−1 = a
�10m−1

9

�

Nurettin Irmak

Let (Fn)n≥0 be Fibonacci sequence given by the relation Fn = Fn−1 +
Fn−2 with F0 = 0 and F1 = 1. Lucas sequence (Ln)n≥0 that satisfies
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the same recurrence relation with the initial conditions L0 = 2 and
L1 = 1.

If a positive integer has only one distinct digit in its decimal ex-
pansion, the we call it as “repdigit”. Obviously, such a number has
the form a(10m − 1)/9, for some m ≥ 1 and 1 ≤ a ≤ 9.

It is proven by Luca that 55 is the largest repdigit Fibonacci num-
ber and 11 is the largest repdigit Lucas number. Moreover, Marques
and Togbé proved that there is no repdigit number written as the prod-
uct of Fibonacci numbers with at least two digits. We find repdigit
number written as the product of Lucas numbers with at least two
digits. Namely, we solve the following equation

Ln . . . Ln+k−1 = a

(
10m − 1

9

)
,

for some m ≥ 1, k ≥ 2 and 1 ≤ a ≤ 9 are integers.

References

[1] F. Luca, Fibonacci and Lucas numbers with only one distinct
digit, Potugal. Math. 50, 243–254, 2000.

[2] D. Marques, A. Togbé, On repdigits as product of consecutive
Fibonacci numbers. Rendiconti dell’Istituto di Matematica
dell’Universita di Trieste, v. 44, p. 393–397, 2012.

The Adjacency-Jacobsthal
Sequence in Finite Groups

Erdal Karaduman, Yeşim Aküzüm, Ömür Deveci

The adjacency-Jacobsthal sequence and the adjacency-Jacobsthal ma-
trix were defined by Deveci and Artun (see [1]). In this work, we
consider the cyclic groups and semigroups which are generated by the
multiplicative orders of the adjacency-Jacobsthal matrix when read
modulo α. Also, we study the adjacency-Jacobsthal sequence mod-
ulo α and then we obtain the relationship among the periods of the
adjacency-Jacobsthal sequence modulo α and the orders of the cyclic
groups obtained. Furthermore, we redefine the adjacency-Jacobsthal
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sequence by means of the elements of 2-generator groups which is
called the adjacency-Jacobsthal orbit. Then we examine the adjacency-
-Jacobsthal orbit of the finite groups in detail. Finally, we obtain the
periods of the adjacency-Jacobsthal orbit of the dihedral group D10 as
applications of the results obtained.

Reference

[1] O. Deveci and G. Artun, The Adjacency-Jacobsthal Numbers, is
submitted.

Irrationality and transcendence of infinite
continued fractions of square roots

Ondřej Kolouch

(joint work with Jaroslav Hančl, Radhakrishnan Nair)

Having considered the irrationality and transcendence of real numbers
given as series we investigate the irrationality and transcendence of real
numbers defined as continued fractions expansions. We give conditions
on a sequence of positive integers {an}∞n=1 sufficient to ensure that the
number defined by the continued fraction expansion [0;

√
a1,
√
a2, . . .]

is either irrational or transcendental.

Annihilating class groups by means of units

Radan Kučera

For an abelian extension K/F of number fields, the machinery of
F. Thaine and K. Rubin constructs annihilators of the ideal class group
of K as images of so-called special units of K in suitable Γ-linear maps
to Z[Γ], where Γ = Gal(K/F ). If F = Q or F is an imaginary quadratic
field then there is a standard source of special units: circular units or
elliptic units, respectively. This talk is devoted to a particular case
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when F = Q or F is an imaginary quadratic field and the exten-
sion K/F is cyclic of p-power degree, p being an odd prime. For some
fields K of this type we obtain a stronger annihilation result than the
standard application of Thaine-Rubin machinery produces. This gain
is obtained by an explicit construction of a unit which is not known to
be special, but which can still be used under a slight modification of
the machinery.

On Thue equations

Claude Levesque

A survey of the results on Thue equations jointly obtained by Michel
Waldschmidt and myself will be given.

Cyclotomic factors of Serre’s polynomials

Florian Luca

Consider the family of polynomials Pm(X) ∈ Q[X] given by∏
m≥1

(1− qm)−z =
∑
m≥0

Pm(z)qm.

These polynomials have deep connections with the theory of partition
numbers and the Ramanujan τ -function. They appeared for the first
time in work of Newman 1955, and were used by Serre in his 1985 work
on the lacunarity of the powers of the Dedekind eta function. They
can also be given recursively as P0(X) = 1 and

Pm(X) =
X

m

(
m∑
k=1

σ(k)Pm−k(X)

)
.
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It is easy to see that Pm(X) has no positive real roots. Further, by the
Euler pentagonal formula, it follows that X + 1 | Pm(X) for infinitely
many m. We ask whether Pm(X) can have other roots of unity ex-
cept −1. We prove that this is never the case, namely that if ζ is a
root of unity of order N ≥ 3 and m ≥ 1, then Pm(ζ) 6= 0. The proof
uses basic facts about finite fields and a bit of analytic number theory.

On partial limits of sequences

Ladislav Mišík, János T. Tóth

The concept of a limit of a sequence is a basic concept in mathemat-
ical analysis. We analyse this concept in more details using another
basic concept of analysis, the concept of measure on sets of positive
integers. We define a degree of convergence of a given sequence to a
given point with respect to a chosen measure as a number in interval
[0, 1]. We study its properties depending on properties of the chosen
measure. It appears that standard limits and their known generaliza-
tions (convergence with respect to a filter or ideal) are special cases in
our approach.

On numbers of permutations being products
of pairwise disjoint cycles of length d

Piotr Miska

(joint work with Maciej Ulas)

In [1] T. Amdeberhan and V. Moll studied combinatorical identities,
2-adic valuations and asymptotics of numbers H2(n) of involutions of
a set with n elements, i.e. permutations σ ∈ Sn such that σ2 is the
identity function.

Let us notice that each involution can be written as a product of
pairwise disjoint transpositions. Then there is natural to ask about
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arithmetic properties of numbers Hd(n) of permutations of a set with
n-elements which are products of pairwise disjoint cycles of length d
(d is a fixed positive integer greater than 1). During the talk I will
present some results on numbers Hd(n), e.g. periodicity of sequences
(Hd(n) (mod pr))n∈N where p is a prime number and r is a positive
integer, p-adic valuations and properties of polynomials associated with
exponential generating functions of sequences (Hd(n))n∈N.

Reference

[1] T. Amdeberhan and V. H. Moll, Involutions and their progenies,
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On Weyl’s theorem on uniform
distribution of polynomials

Radhakrishnan Nair

Suppose the sequence of natural numbers (kn)n≥1 is Hartman uni-
formly distributed and good universal. Also suppose ψ is a polynomial
with at least one coefficient other than ψ(0) an irrational number. We
adapt an argument due to H. Furstenberg to prove that the sequence
(ψ(kn))n≥1 is uniform distribution modulo one. This is used to give
some new families of Poincaré recurrent sequences. In addition we
show these sequences are also intersective and Glasner.

Number systems over orders

Attila Pethő

(joint work with Jörg Thuswaldner)

Let K be a number field of degree k and let O be an order in K.
A generalized number system over O (GNS for short) is a pair (p,D)
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where p ∈ O[x] is monic and D ⊂ O is a complete residue system
modulo p(0). If each a ∈ O[x] admits a representation of the form

a ≡
`−1∑
j=0

djx
j (mod p)

with ` ∈ N and d0, . . . , d`−1 ∈ D then the GNS (p,D) is said to have
the finiteness property. Using fundamental domains F of the action
of Zk on Rk we define classes

GF :=
{

(p,DF )
∣∣ p ∈ O[x]

}
of GNS whose digit sets DF are defined in terms of F in a natural
way. We are able to prove general results on the finiteness property of
GNS in GF by giving an abstract version of the well-known “dominant
condition” on the absolute coefficient of p. In particular, depending
on mild conditions on the topology of F we characterize the finiteness
property of (p(x±m), DF ) for fixed p and large m ∈ N. Using our new
theory, we are able to give general results on the connection between
power integral bases of number fields and GNS.

Effective Resolution of Diophantine equations
of the form un + um = wpz11 · · · pzss

István Pink

(joint work with Volker Ziegler)

Let (un)n≥0 be a fixed non-degenerate binary recurrence sequence with
positive discriminant, w a fixed non-zero integer and p1, p2, . . . , ps fixed,
distinct prime numbers. In this talk we consider the Diophantine equa-
tion

un + um = wpz11 · · · pzss
and prove under mild technical restrictions effective finiteness results.
In particular we give explicit upper bounds for n,m and z1, . . . , zs.
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Furthermore, we provide a rather efficient algorithm to solve Diophan-
tine equations of the described type and we demonstrate our method
by an example. Namely, we solve completely the equation

Fn + Fm = 2z13z2 . . . 199z46 ,

where (Fn)n≥0 is the Fibonacci sequence.

Independence of multiplicative arithmetic functions

Kanet Ponpetch, Vichian Laohakosol, Sukrawan Mavecha

An arithmetic function is a real-valued function defined over N. For
arithmetic functions F1, F2, their addition and Dirichlet multiplication
(or convolution) are defined, respectively, by

(F1 + F2)(n) := F1(n) + F2(n), (F1 ∗ F2)(n) :=
∑
d|n

F1(d)F2(n/d).

We write F ∗i for F ∗ · · · ∗ F (a Dirichlet multiplication of F with
itself i times). It is well-known [2] that the set of arithmetic functions
(A,+, ∗) is a unique factorization domain. The identity with respect
to ∗ is the arithmetic function

I(n) :=
{

1 if n = 1
0 if n > 1.

A function M ∈ A is said to be multiplicative if

M(mn) = M(m)M(n) for all m,n ∈ N with gcd(m,n) = 1.

A function f ∈ A is said to be complete multiplicative if

f(mn) = f(m)f(n) for all m,n ∈ N.

We denote the set of multiplicative arithmetic functions by M
and the set of complete multiplicative arithmetic functions by C. For

27



f ∈ A, f(1) > 0, the Rearick logarithmic operator of f (or logarithm
of f ; [3]), denoted by

Log f(n) =
∑
d|n

f(d)f−1(n/d) log d if n > 1

Log f(1) = log f(1).

We say that the arithmetic functions F1, . . . , Fr are linearly inde-
pendent (over R) if the relation

α1F1(n) + · · ·+ αrFr(n) = 0

with real numbers α1, . . . , αr is only possible when α1 = · · · = αr=0.
We say that the arithmetic functions F1, . . . , Fr are algebraically

independent (over R) if for any

P (X1, . . . , Xr) =
∑

(β1,...,βr)∈Nr
0

δβ1,...,βrX
∗β1
1 ∗ · · · ∗X∗βrr ∈ R[X1, . . . , Xr]\{0},

we have P (F1(n), . . . , Fr(n)) 6≡ 0 (n ∈ N).
We say that the arithmetic functions F1, . . . , Fr are multiplicatively

independent if for (γ1, . . . , γr) ∈ Zr, the relation

F ∗γ11 ∗ · · · ∗ F ∗γrr = I

holds only when γ1 = · · · γr = 0.
Given a set M1, . . . ,Mr of multiplicative arithmetic functions. It

is shown that the following are equivalent;

(i) M1, . . . ,Mr are algebraically independent over R;
(ii) M1, . . . ,Mr are multiplicatively independent over R;
(iii) LogM1, . . . ,LogMr are linearly independent over R

where LogM ∈ A is the Rearick log;
(iv) LogM1, . . . ,LogMr are algebraically independent over R.

A useful criterion for independence based on the use of determinant
is also investigated.
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Arithmetical topologies

Štefan Porubský

In this talk we bring a survey on some topologies and their general-
izations defined over the rational integers or over the positive integers.
We describe their properties and applications in solving of selected
problems in number theory.
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Integral basis and monogenity in
parametric families of number fields

László Remete

We consider infinite parametric families of number fields, pure exten-
sions and the family of simpest sextic number fields. We show that
the structure of their integral bases is periodic and explicitely give the
integral bases. Using the integral basis we expicitely construct fac-
tors of the corresponding index form. This leads to conditions on the
monogenity of the fields.

Circular units of abelian fields
with four ramified primes

Vladimír Sedláček

Circular units appear in many situations in algebraic number theory
because in some sense, for a given abelian field, they form a good ap-
proximation of the full group of units, which is usually very hard to
describe explicitly. The index of the group of circular units in the full
group of units is closely related to the class number of the maximal real
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subfield of the respective field, which was already known to E. Kum-
mer in the case of a cyclotomic field and which was generalized by
W. Sinnott to any abelian field. Circular units can be also used for a
construction of annihilators of ideal class group of a given real abelian
field, which was discovered by F. Thaine and generalized by K. Rubin.

In contract to the full group of units, the Sinnott group of circu-
lar units is given by explicit generators, nevertheless a Z-basis of this
group was described only in a few very special cases, for example when
the abelian field is cyclotomic, has at most two ramified primes, or has
three ramified primes and satisfies some other conditions. The aim of
this talk is to present new results in the case of a real abelian field
having four ramified primes under some other assumptions. Addition-
ally, we will also explore the structure of the module of all relations
(among the generators of the group of circular units) modulo the norm
relations.

The 2-adic valuation of some
generalized Fibonacci sequences

Bartosz Sobolewski

For a given integer k ≥ 3 define a generalized Fibonacci sequence
{tk(n)}n≥0 using the recurrence

tk(n+ k) =
k−1∑
i=0

tk(n+ i),

with the initial terms tk(0) = 0 and tk(1) = · · · = tk(k − 1) = 1.
The problem of computing the 2-adic valuation of tk(n) has already

been considered by Lengyel and Marques [1], [2] for k ∈ {3, 4, 5}. In
the talk I will show a generalization of their results and characterize
ν2(tk(n)) fully for k even and “almost” fully for k odd.

The result will be applied to effectively solve Diophantine equa-
tions of the form

d∏
j=1

tk(nj) = m!
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with respect to n1, . . . , nd,m, where d ≥ 1 is a fixed integer. I will
argue that the algorithm of solving the equation also works for a more
general family of sequences.

At the end, I will briefly discuss how the results are related to
p-regular sequences, in particular, the work of Shu and Yao [3], who
gave a criterion for p-regularity of the p-adic valuation of binary recur-
rence sequences.

Most of the presented results can be found in my paper [4].
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New bounds for irrationality
measure of infinite series

Jan Šustek

(joint work with Lukáš Novotný)

For a real number ξ its irrationality measure µ(ξ) is defined as the
supremum of all positive real numbers µ such that the inequality

0 <

∣∣∣∣ξ − p

q

∣∣∣∣ < 1
qµ

has infinitely many solutions p ∈ Z, q ∈ Z+. Irrationality measure
describes how closely the number ξ can be approximated by rational
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numbers. All irrational numbers ξ have irrationality measure µ(ξ) ≥ 2.
A famous result of Roth is that all algebraic irrational numbers ξ have
irrationality measure µ(ξ) = 2.

In the talk we present new lower and upper bounds for irrationality
measure of infinite series of rational numbers. Our results depend
only on the speed of convergence of the series and do not depend on
arithmetical properties of the terms.

Convolution of second order
linear recursive sequences

Tamás Szakács

We consider the sequence {c(n)}∞n=0 given by the convolution of two
different second order linear recursive sequences {Gn}∞n=0 and {Hn}∞n=0:

c(n) =
n∑
k=0

GkHn−k .

We deal with convolution of two different sequences, where the se-
quences are R-sequences or R-Lucas sequences and give some special
convolutions for Fibonacci, Pell, Jacobsthal and Mersenne sequences
and their associated sequences. We present theorems and give for-
mulas for {c(n)}∞n=0, where the formulas depend only on the initial
terms and the roots of the characteristic polynomials. After each
theorem, we show the special cases of the theorem in corollaries us-
ing the named sequences (Fibonacci, Pell, Jacobsthal, Mersenne, Lu-
cas, P-Lucas, J-Lucas, M-Lucas). For example, the convolution of
Fibonacci and Pell numbers is:

c(n) =
n∑
k=0

FkPn−k = Pn − Fn .
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On the equation 2n ± α · 2m + α2 = x2

László Szalay

In the presentation, we investigate the diophantine equation

2n ± α · 2m + α2 = x2

in the non-negative integers n,m and x, where α is an odd prime and
2 is not a quadratic residue modulo α.

On a coprimality condition for
consecutive values of polynomials

Márton Szikszai

Let k ≥ 2. Is it true that in every set of k consecutive integers there
exists one which is coprime to all the others? Pillai proved that it
is true, whenever k ≤ 16, but false for each 17 ≤ k ≤ 430. Brauer
extended the later observation to all k ≥ 17. Note that Erdős al-
ready showed the same for every k which is large enough, however his
proof was ineffective. The problem was generalized in many ways, ei-
ther by replacing the coprimality condition with something stronger
or by replacing consecutive integers with consecutive terms of some
integer sequences. For instance, the cases of arithmetic progressions
and quadratic sequences have already been investigated by the likes
of Evans, Ohtomo and Tamari, Hajdu and Saradha, Harrington and
Jones. In this talk, I discuss a very recent result of Sanna and myself
in the same direction.

Let f be a quadratic or cubic polynomial with integer coefficients.
We prove that there exists a positive constant k0, depending on f only,
such that for every k ≥ k0 one can find infinitely many positive inte-
ger n with the property that none of f(n), f(n + 1), . . . , f(n + k − 1)
is coprime to all the others. This extends the result of Evans on linear
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polynomials (arithmetic progressions) to quadratic and cubic polyno-
mials and as a corollary, we also verify one part of a conjecture made
by Harrington and Jones on quadratic sequences. The proof of our
result is constructive and makes use of properties of the Galois group
of an auxiliary polynomial associated with f and various estimates on
the density of prime divisors with prescribed properties.

On a new generalization of Horadam sequence

Elif Tan

Consider a generalization of Horadam sequence {wn} which is de-
fined by the recurrence relation wn = awn−1 + cwn−2 if n is even,
wn = bwn−1 + cwn−2 if n is odd with arbitrary initial conditions
w0 and w1, where a, b, and c are nonzero numbers. Many sequences
in the literature are special cases of this sequence. In particularly,
when a = b, we get the classical Horadam sequence. In this study, we
derive some basic properties of the sequence {wn} and give a matrix
representation for it.

Normal Numbers: Quantitative
and computational aspects

Robert F. Tichy

(joint work with M. Madritsch, A. Scheerer)

A real number x is called normal in base b if in b-adic expansion
of x blocks of arbitrary length k ∈ N appear asymptotically with fre-
quency b−k. A number x is called absolutely normal if this holds for
arbitrary bases b = 2, 3, 4, . . .. Borel (1909) showed that (in Lebesgue
sense) almost all real numbers x are absolutely normal. We present
equivalent definitions including uniformly distributed sequences and
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discrepancies. Furthermore, various algorithms for constructing ab-
solutely normal numbers are discussed and a complexity analysis is
established. This shows a tradeoff between the convergence speed to
normality (measured by the discrepancy) and the computational com-
plexity of the algorithms. Finally, arbitrary Pisot numbers β are taken
as base numbers which leads to a much stronger concept of normality.

On consecutive 1’s in continued fractions
expansions of square roots of prime numbers

Maciej Ulas

Motivated by recent work of Ska lba we study the problem of existence
of sequences consisting consecutive 1’s in the periodic part of the con-
tinued fractions expansions of square roots of primes. In particular,
we prove that there are infinitely many prime numbers p such that
the continued fraction expansion of

√
p contains three consecutive 1’s

in the periodic part. This result improves recent findings of Ska lba.
We also present effects of our computations related to the considered
problem and formulate several open questions and conjectures.
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