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Abstracts of talks



Hilbert space with reproducing kernel and uniform
distribution preserving maps

Viadimir Baldz, Jana Fialovd, Oto Strauch

For Hilbert space H with reproducing kernel K(x,y), we express the
mean square worst-case error
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where ®(x) is a uniform distribution preserving map, Xo,...,Xy_1 €

[0,1)%, and gmn(x,y) are copulas associated with points x,, and xy,.
Applying this, for dimension s = 1, we find that the minimum of the
mean square worst-case error is attained in the sequence x, = &, for
the kernel K(z,y) = 1 — max(z,y) and ®(z) = .

Effective results for Diophantine equations over
finitely generated domains

Attila Bérczes

(Joint work with J.-H. Evertse and K. Gyéry.)

Let A be an arbitrary integral domain of characteristic 0 that is
finitely generated over Z. We consider Thue equations F'(z,y) = ¢
in x,y € A, where F is a binary form with coefficients from A and 9
is a non-zero element from A, and hyper- and superelliptic equations
f(z) =0y™ in z,y € A, where f € A[X], d € A\ {0} and m € Z>».



Under the necessary finiteness conditions we give effective upper
bounds for the sizes of the solutions of the equations in terms of ap-
propriate representations for A, §, F', f, m. These results imply that
the solutions of these equations can be determined in principle. Fur-
ther, we consider the Schinzel-Tijdeman equation f(x) = dy™ where
z,y € A and m € Z>o are the unknowns and give an effective upper
bound for m.

In the proofs we combine effective finiteness results for these types
of equations over number fields and over function fields, along with a
specialization method developed by Gyoéry in the 1980’s and refined
recently by Evertse and GyOry.

Representing integers as sums or differences of
general power products

Csanad Bertok

Problems concerning representations of integers as linear combinations
of power products has a large literature (see e.g. the corresponding
papers of F. Luca, L. Hajdu, R. Tijdeman, V. S. Dimitrov and E. W.
Howe, Zs. Adam and the references given there). In the presentation we
extend a result of Hajdu and Tijdeman concerning the smallest number
which cannot be obtained as a sum of less than k& power products of
fixed primes.

Put A, = A U (—A"). Define the function F(k) (k € N) to be
the smallest natural number which cannot be represented as the sum
of less than k terms from A’, and let Fy(k) be the function defined
similarly, except that A’ is replaced by A’,.

Nathanson asked for the growth properties of Fi (k), in the particu-
lar case when the elements a; (i =1,...,1) of A are primes. Hajdu and
Tijdeman proved several related theorems, both for F'(k) and Fy (k).
More precisely , they proved that for all £ > 1

ECok < F(k) < CF(k)IHIR and kC0F < Fi(k) < exp((k1)©?)



hold, where Cjj and C5 are positive absolute constants, ¢* > 0 is arbi-
trary, and C} is a positive constant depending only on £*.

In the presentation we consider the general case, where the ele-
ments a; (i = 1,...,1) of A are arbitrary positive integers. We note
that it seems to be more natural to consider the problem under this
condition mainly because since a part of the argument goes modulo
m (with some appropriate m), the extra assumption that the numbers
a; (i = 1,...,1) should be primes is irrelevant at many points. To
prove our results, among other things we need to extend classical re-
sults of Tijdeman concerning the gaps in A’ where the a; are primes,
to the case of arbitrary positive integers a; (i =1,...,1).

On a modification of the group of circular units of a
real abelian field

Michal Bulant, Radan Kucera

For a real abelian field K, Sinnott’s group of circular units C is a sub-
group of finite index in the full group of units Fx playing an important
role in Iwasawa theory. Let K. /K be the cyclotomic Zy-extension of
K, and hg, be the class number of K,, the n-th layer in K. /K.
Then for p # 2 and n going to infinity, the p-parts of the quotients
[Ek, : Ck,]/hk, stabilize. Unfortunately this is not the case for p = 2,
when the group (' i of all units of K, whose squares belong to Ck,
is usually used instead of Cx. But C} g is better only for index for-
mula purposes, not having the other nice properties of C'. Our aim
is to offer another alternative to C'r which can be used in cyclotomic

Zy,-extensions even for p = 2 still keeping almost all nice properties
of CK.



About the existence of the generalized Gauss
composition of means

Peter Csiba

Let I C R be a non-void open interval. Let M;: I? — I(i = 1,2) be
means on I and a,b € I. Consider the sequences (a,) and (b,,) defined
by the Gauss iteration in the following way:

a1 = a, b1 =0,
an+1 := Mi(an,byn), bny1 := Ma(an,b,) (n €N).

If the limits lim,, o ap, lim,_, b, exist and

lim ap, = lim b, ,

n—oo n—oo
than this common limit is called Gauss composition of the means My
and My for the numbers a and b, and denoted by M; ® Mas(a,b).

It is known, if My, My are strict means on I, then M; ® Ma(a,b)
exist for every a,b € I.

We generalised this result. We show that if means M;, M (not
necessarily continuous) may be restricted by strict means, then their
Gauss composition exists. We also show that the continuity of restric-
tive means is necessary.

Sums of reciprocals modulo composite integers

Karl Dilcher

(Joint work with John B. Cosgrave.)

In 1938, as part of a wider study, Emma Lehmer derived a set
of four related congruences for certain sums of reciprocals of positive
integers over various ranges, modulo squares of odd primes. These were



recently extended to congruences modulo squares of positive integers
n, with certain restrictions on n. In this talk I will characterize those
excluded n for which the congruences still hold, and find the correct
reduced moduli in the cases in which the congruences do not hold.

Reducibility and irreducibility of Stern polynomials

Larry Ericksen

(Joint work with Karl Dilcher.)

The classical Stern (diatomic) sequence was extended by Dilcher
and Stolarsky to the Stern polynomials a(n;x) defined by a(0;z) = 0,
a(l;2) = 1, a(2n;z) = a(n;2?), and a(2n + 1;2) = va(n;2?) + a(n +
1;22). These polynomials a(n;x) are Newman polynomials, as they
have only 0 and 1 as coefficients. Numerous reducibility and irreducibil-
ity properties for these polynomials will be proven. Special attention
will be given to the divisibility properties for Stern polynomials of the
form a(2* + 1;x). Cyclotomic polynomials will be identified as factors
of the reducible Stern polynomials.

Generalization of uniform distribution of sequences by
using densities

Ferdindnd Filip and Jdnos T. Toth

Let w = {z,}52; be a given sequence of real numbers. For a subset E
of the unit interval I = (0,1), let the set A(F,w) be defined as

A(E,w) = {n € N{z,,} € E}.



Definition. Let ¢ be a density. The sequence w = {z,}2°, of real
numbers is said to be p-uniformly distributed modulo 1 if for every pair
a,b of real numbers with 0 < a < b < 1 we have

@(A({a,b),w)) =b—a.

In this talk we determine for what kind of ¢ densities there exsists
a sequence which is ¢-uniformly distributed modulo 1.

Elements of minimal index in the infinite family of
simplest quartic fields

Istvdn Gadl

(The result is joint with G. Petranyi.)

It is a classical problem in algebraic number theory to consider
power integral bases of type {1,c,...,a" '} of number fields K. It is
well known that « generates a power integral basis if and only if the

index of a, that is
(o) = (Z}: : Z]] ")

is equal to 1. There is an extensive literature about calculating power
integral bases and deciding monogenity of specific number fields. If a
number field does not admit elements of index 1, it is an important
question to calculate elements of minimal index in the number field.
Determining element of minimal index usually requires calculating ele-
ments of given index up to a certain bound, which is more complicated
than just to determine elements of index 1.

It yields a challenge to consider this problem in infinite parametric
families of number fields.

In the talk we consider the infinite parametric family of simples
quartic fields, generated by a root of the polynomial

Px) =at —tz® —62° +tz + 1



where t € Z, t # 0,+£3. H.K.Kim and J.S. Kim (2003) determined
an integral basis in these fields. P. Olajos (2005) showed that power
integral bases exist only for t = 2, 4. In the talk we describe all elements
of minimal indices in this parametric family of number fields.

A note on the Diophantine equation P(z) = m! 4+ n!

Maciej Gawron

We start with a short overwiew of Brocard-Ramanujan type Diophan-
tine equations. As a main result we consider the equation P(z) = n!+
m!, where P is a polynomial with rational coefficients. We show that
the ABC Conjecture implies that this equation has only finitely many
integer solutions when d > 2 and P(z) = agz%+aq_329 3+ - -+a1z+ao.

A class of K-fold infinite series and their reduction

Marian Gendcev

We present a result that enables the transformation of the general
K-fold infinite series of the form

K
> [ =),

1<ni1<ne<--<ng j=1

R(n) is a rational function satisfying some simple conditions, to a spe-
cial ordinary (i.e., 1-fold) infinite series. We apply this result to the

rational function )

(n+a)s+b5
In this case we call the resulting K-fold sum the generalized multiple

Hurwitz zeta-star function and denote it by (*(a;b;{s}x). We con-
struct a very effective algorithm which enables the complete evaluation

R(n) =



of (*(a;b;{2s} k) for a € {0,—1/2}, b € R with b # 0, and K, s € N are
arbitrary. Several comments to the known evaluations of the ordinary
multiple Riemann zeta-star function (*(0;0;{2s}x) = (*({2s}x) cor-
responding to a = b = 0 are given. Also a new identity for (*({3} k) is
established.

An additive problem in cyclic groups

Georges Grekos

(Joint work with Jean-Marc Deshouillers.)
Let h,n be integers, 2 < h < n. An h-basis for the “interval”
[n] :={0,1,...,n — 1} is a subset A of [n] such that

hA:=={z1+ - +xp; €A, 1<i<h}

contains [n]. An h-basis for the cyclic group G,, := Z/nZ is a subset A
of G, such that hA = G,,.

A central question in additive number theory is to find “economical”
h-bases, that is h-bases of minimal size (cardinality).

We present a construction which gives, in the case of G, and for
certain values of h, h-bases of cardinality much smaller than the known
upper bound An'/" bound due to Hans Rohr-bach [Ein Beitrag zur
additiven Zahlentheorie. Math. Z. 42, 1-30 (1936)].

Perfect powers in products with terms from
arithmetic progression — A survey

Kalmdn Gyéry

By a celebrated theorem of Erdds and Selfridge, the product of con-
secutive positive integers is never a power. It is an old conjecture that
more generally the equation

m(m+d)...(m+ (k—1)d) =y"

10



has no solution in positive integers m,d, k,y,n with ged(m,d) = 1,
k>3, n>2and (k,n) # (3,2). This equation has been investigated
by many people. In the last fifteen years the conjecture was confirmed
for £ < 35. In our talk we give a survey of these, and some related
results and the methods utilized in the proofs.

Sets with perfect power shifted products
Lajos Hajdu

Diophantine sets, i.e. sets A with the property that ab + 1 is a per-
fect square for all distinct a,b € A, have a long history and a broad
literature. In the talk we present results concerning the related prob-
lem where for all distinct a,b € A, the shifted products ab + n should
be perfect powers (possibly having different exponents) for some fixed
value of n. Among others, we show that the size of a set A having this
property cannot be bounded by an absolute constant. The new results
presented are joint with Bérczes, Dujella and Luca.

Irrationality of infinite products

Ondrej Kolouch

(Joint work with Jaroslav Hancl.)
The talk deals with the criterium for the infinite product of infinite
series of rational numbers to be the irrational number.
In 1975 Erd6s proved that if {a,}72 , is an increasing sequence of
positive integers such that
1
Qn
n

liminfa
n—oo

= 0

then the number ) o, - is irrational.
- n
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We follow this result and prove
Theorem. Let {a,}° ; be an increasing sequence of positive integers
with
1

liminf a' = co.
n—oo

(> )

m=1

Then the number

is irrational.

Local to global principle for étale K-theory of curves

Piotr Krason

(Joint work with G. Banaszak.)

We investigate linear dependence over Z; of elements in étale K-
theory of curves. This is done via reduction maps. We discuss local
to global principle in this context. The work is based on our previous
result concerning linear independence over Z of elements in the Mordell-
WEeil group of an abelian variety defined over a number field.

On the class group of a cyclic field of odd prime
power degree

Radan Kucera

(Joint work with Cornelius Greither.)

Let p be an odd prime and K/Q be a Galois extension of degree
¢ = p* whose Galois group G = Gal(K/Q) is cyclic. Let clx be the
ideal class group of K and hx = |clx | be the class number of K.

Let p1,...,ps be the primes which ramify in K/Q, let e; be the
ramification index of p; and g; be the number of prime ideals of K

12



dividing p;. We assume that s > 1 and that the primes p1,...,ps are
ordered in such a way that { =e; > ey > --- > es > p.

Let Cx be the Sinnott group of circular units of K, which is a
subgroup of the group Fx of all units of K of finite index defined by
explicit generators. Sinnott’s index formula for our field K gives that
the index [Ex : O] =271 - hg - ext.

The aim of this talk is to show that, if s > 2, we can enlarge the
Sinnott group Ck by other explicit generators to a subgroup Cg of
Ex having smaller index [Ex : Cx| = 271 - hy - p" - Hj-:l e;gj, where
n =% max{g; | ¢; > p'}. This formula gives that hy is divisible
by p™" - szl e?j , which is stronger than the usual divisibility result
obtained by genus theory if and only if there are at least two ramified
primes p; having g; > 1. Moreover, assuming that p does not ramify in
K/Q, by a modification of Thaine-Rubin machinery we can show that
if a € Z[G] annihilates the p-Sylow subgroup of the quotient Ex /Ck
then (1 — ot/ P) . o annihilates the p-Sylow subgroup of the class group
clg, where o is a generator of the Galois group G.

On the frequency of multiplicative properties in
diophantine approximations of almost all real numbers

Pierre Liardet

Let E be a subset of the natural numbers and let p,(x)/g,(x) be the
n-th convergent of x related to its regular continued fraction expan-
sion. What can be said about the set E(z) := {n € E; g,(z) € E}?
In the classical metric theory of continued fractions, P. Erdss (JNT
1970) proved that #FE(x) is infinite for almost all x if and only if
> rer e(k)/k* = oo where ¢(-) is the Euler arithmetic function. A
result which is closed to the Duffin-Schaeffer conjecture (that says for
e: E — (0,00) given, the inequality

e(q)

\g—

-
q

<3
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holds for infinitely many p and ¢ coprime with ¢ € F if and only if

Z £(9)e(q) _

qeFE q
In this talk we first survey recent results about this conjecture and then
pay more attention to sets E for which F(z) has a fixed asymptotic
density 0(E) for almost all x. This is precisely the case for sets E which
are Buck measurable. We extend such a result to a wider class of sets
FE satisfying interesting multiplicative structures as, for example, the
class of k-free integers. Extensions to other continued fractions in one
or higher dimensions should be also discussed.

Fundamental units for orders generated by a unit

Stéphane Louboutin

Let € be an algebraic unit. It is a natural question to ask wether ¢
belongs to some system of fundamental units of the order Z[e]. We will
show that this is indeed the case for some number fields Q(¢) of small
degrees. In our talk, we will restrict ourself to the case of cubic units,
i.e. to the case that Q(e) is a cubic number field.

Spectra of quadratic Pisot units as cut-and-project sets

Z. Masdkovd, K. Pastircakovd, E. Pelantovd

The spectrum of a real number § > 1 is the set of p(f) where p ranges
over all polynomials with coefficients restricted to a finite set of con-
secutive integers, in particular,

X”(ﬁ):{zn:ajﬂj:neN, ajGA:{O,l,...,r}}

=0
:{O:$0<IL‘1<$2<$3<"'}.

14



The study of such sets for g € (1,2) was initiated by Erdds et al. [1] and
since then, many authors have contributed to the description of X" (/3),
especially in case that (3 is a Pisot number. A general result by Feng and
Wen [2] states that for a Pisot number § and r+1 > 3, the sequence of
distances x,+1 — x, in X"(f) can be generated by a substitution. The
alphabet of the substitution grows rapidly with r. However, neither the
explicit prescription for the substitution, nor the values of distances and
their frequencies are known in general. The only case of base 3, for
which the minimal distance in X" (/) is known for any r is when /3 is a
quadratic Pisot unit [3]. For the same class of 3, we show that recasting
of the spectra in the frame of the cut-and-project scheme may bring
new insight into the problem. We determine the values of all distances
between consecutive points and their corresponding frequencies. We
also show that shifting the set A of digits so that it contains at least
one negative element, or considering negative base —f instead of 3, the
generalized spectrum coincides with a cut-and-project sequence. As a
consequence, we can show that the spectrum can be generated by a
substitution over an alphabet at most five letters.

References

[1] P. Erdés, 1. Jod, V. Komornik, Characterization of the unique
expansions 1 = 22, ¢~™ and related problems, Bull. Soc. Math.
France 118 (3) (1990), 377-390.

[2] D.-J. Feng, Z.-Y. Wen, A property of Pisot numbers, J. Number
Theory, 97 (2) (2002), 305-316.

[3] T. Komatsu, An approximation property of quadratic irrationals,
Bull. Soc. Math. France, 130 (1) (2002), 35-48.
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About J-numbers, the solutions to the equation

d(dp(n)(n — 1)) = p(n)p(n — 1) with ¢ the Euler

¢-function.

V. Janitzio Mejia Huguet

In this talk we will prove the existence of infinitely many solutions of the
equation ¢(¢p(n — 1)) = ¢(n)¢(n — 1). Such solution will be referred to
simply as J-numbers. We discuss the problem of determining whether
or not there exist infinitely many J-numbers having only two prime
factors. Some consequences of this question would yield, concerning
the well-known family of Sierpinski numbers, are mentioned too.

Some problems in arithmetics of dynamical systems

Wladystaw Narkiewicz

A family F of algebraic number fields will be defined, and the following
result will be established:

Let n be an odd integer. If K € F' and f(X) = X" + ¢, where ¢
is a non-integral element of K. If K does not contain any primitive
root of unity of order p, with p being a prime divisor of n, then the
length of cycles arising by iterating F' in K is bounded by a constant
B(K,n), and if all prime divisors of n exceed 2V with N = [K : Q],
then B(K,n) depends only on N.

Some open problems will be also presented.

16



On expressible sets for products

Lukds Novotny

For a sequence of real numbers {a,}2° ; we call the set

En{an}se, = {ﬁ (1 + an16n> e, € Z+}

n=1

its II-expressible set. We calculate Er{a,} 2, under various hypothe-
sis on {ap }o2 ;. Where this is not possible we give some partial informa-
tion on its contents. This investigation can be considered a continuation
of related investigations on the Y-expressible sets of sums.

On the Masser-Gramain constant

W.G. Nowak

(based on joint work with Guillaume Melquiond (U. Paris-Sud) and
Paul Zimmermann (Nancy))

As a two-dimensional analogue of the Euler-Mascheroni constant -+,
the Masser-Gramain constant § has been defined as

0= lim
N—oo

N
k=2 k
Here r; denotes the minimal radius of a compact circular disc in the
Euclidean plane, with arbitrary center, which contains at least k£ points
with integer coordinates. In 1985, F. Gramain conjectured that § might
be equal to

2

™
" =14+2y+log |
+ 27+ og<2L2

> = 1.822825...,
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where L = 2 fol(l — 2% 712 dz is known as Gauss’ lemniscate constant.
At that time, the only numerical information about § was due to a com-
putation by F. Gramain & M. Weber which furnished 1.81 < § < 1.9.
In this talk the history of § is described briefly, and an account is given

on a recent attack on the problem [1]: Using modern computing power
and a tight approximation to the lattice discrepancy of a circular disc
with arbitrary center, it has been calculated that, up to four decimal
digits, 6 ~ 1.8198. This disproves Gramain’s conjecture.

References

[1] G. Melquiond, W.G. Nowak, and P. Zimmermann, Numerical ap-
proximation of the Masser-Gramain constant to four decimal dig-
its: 6 = 1.819..., Math. Comp. 82/282 (2013), 1235-1246.

Recent results on field indices

Gabor Nyul

The field index of an algebraic number field is the greatest common
divisor of the indices of all primitive algebraic integer elements in the
field. At a previous edition of this conference, we reported our research
on field indices. We survey earlier results and present our recent results
for some parametric families of number fields.

On the distribution of polynomials with real
coefficients, a new application of the Selberg integral

Attila Pethd

My talk is based on joint work with Shigeki Akiyama, which is accepted
for publication by Journal of the Math. Soc. Japan.
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Let £ C R denote the set of coefficients of monic polynomials of
degree d with roots inside or on the unit circle. This is a bounded
set, which can be divided naturally into |d/2] + 1 subsets according
the signature of the polynomial, i.e., according the number of its real
roots. Let 56(;’8) C &; denote the set with signature (r,s),r + 2s = d.
In the talk we answer questions like:

1. What is the probability that picking a point of £; the correspond-
ing polynomial is totally real?

2. More generally, what is the probability that picking a point of &4
the corresponding polynomial has signature (r, s)?

3. Arithmetical properties of these probabilities?

We prove that the volume of E'C(lr’s) can be computed by some gener-
alization of the Selberg integral. It turns out that these numbers are
rational, which are in the totally real case reciprocal of odd integers.
We propose several open problems.

You can download the manuscripts at the URL:
http://www.inf.unideb.hu/ pethoe/cikkek/realandint_poly_v5.pdf
and http://www.inf.unideb.hu/ pethoe/cikkek/int_poly_v8.pdf

On the Diophantine inequality
‘X2 —cXY? —|—Y4‘ <c+2

Bo He, Istvin Pink, Akos Pintér, and Alain Togbé

Generalizing some earlier results, we find all the coprime integer solu-
tions of the Diophantine inequality

X2 —eXYV?+ Y4 <e+2, (X,)Y)=1,

except when ¢ = 2 (mod 4), in which case we bound the number of
integer solutions. Our work is based on the results on the Diophantine
equation

AX*—BY?=C,

where A, B are positive integers and C' € +{1,2,4}.

19



Coprime solutions to ax = b (mod n)

Stefan Porubskiyj

It is well known that a congruence ax = b (mod n) has a solution iff
ged(a,n)|b, and, if the condition is satisfied, the number of incongru-
ent solutions equals ged(a,n). In [1] the authors noticed the following
result which seems not to appear previously explicitly in the literature:
Given a non-zero a € Z,, the ring of residues modulo n, such that
ged(a,n) = ged(b,n), there exists an invertible element x € 7 satisfy-
ing the congruence ax = b (mod n). They gave a very long elementary
proof of this result which played a key role in a problem related to an
electronic signature. In the talk we give a concise proof of this result,
together with a closed formula for the number of incongruent solutions
coprime to n as well. We also give a bound on the probability that
this congruence, for randomly chosen a,b € Z, possesses at least one
solution coprime to n. This talk is based on a joint paper [2] with
O.Grosek (Bratislava).

References

[1] B. Alomair, A. Clark, and R. Poovendran. The power of primes:
security of authentication based on a universal hash-function family.
J. Math. Cryptol., 4(2):121-148, 2010.

[2] O. Grosek and S. Porubsky. Coprime solutions to az = b (mod n).
J. Math. Cryptol., to appear in 2013

Equal values of pyramidal numbers

Zsolt Rabai

A pyramidal number is a figurate number that represents a pyramid
with a base and a given number of sides. The sequence of pyramidal
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numbers is given by the formula

ulu+1)((m = 2u+ (5 —m)
6

P(u,m) =

We consider the equation P(u,m) = P(v,n), or more precisely the
equation

(m —2)u® + 3u® + (5 — m)u = (n — 2)v> + 30> + (5 —n)v

in positive integer unknowns m, n, u and v. We present a method,
which yields an effective upper bound on the values of v and v (in
terms of m and n), and also give the set of solutions for some small
values of m and n. In the proofs we apply results from the theory of
elliptic curves and elliptic logarithms. This is a joint work with Tiinde
Kovécs.

Sidon basis

Eszter Rozgonyi

Let N denote the set of nonnegative integers. Let A = {aj,a2,...},
(a1 < ag < ...) be an infinite sequence of positive integers. For h > 2
integer let Ry, (A, n) denote the number of solutions of the equation

ai, +aj, +---+a;, =n, a, €A, ...,aq;, €A a; <a,<...<a,

where n € N.

A (finite or infinite) set A of positive integers is said to be a Sidon set
if all the sums a + b with a,b € A, a < b are distinct. In other words A
is a Sidon set if for every n positive integer Ra(A,n) < 1. We say a set
A C N is an asymptotic basis of order h, if every large enough positive
integer n can be represented as the sum of A terms from A, i.e., if there
exists a positive integer ng such that Rp(A,n) > 0 for n > ny.

P. Erdés, A. Sarkozy and V. T. Sés asked if there exists a Sidon set
which is an asymptotic basis of order 3. It is easy to see that a Sidon
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set cannot be an asymptotic basis of order 2. A few years ago J.
M. Deshouillers and A. Plagne constructed a Sidon set which is an
asymptotic basis of order at most 7. S. Kiss proved the existence of
a Sidon set which is an asymptotic basis of order 5. We improve this
result by proving that there exists an asymptotic basis of order 4 which
is a Sidon set by using probabilistic methods.

In the talk I will try to give a short summarize about this result,
which is joint work with Sandor Kiss and Csaba Sandor.

The Irrationality of Infinite Series of a Special Kind
Pavel Rucki

The contribution provides several criteria for certain infinite series of
rational numbers to be irrational, transcendental or Liouville. They
are based on the following Erdés Theorem [1]:

Theorem. Let {a,})2, be a strictly increasing sequence of positive
integers. Suppose that

. an+1
lim ———— = oo.
n—oo A1a ... 0n

Then the sum of the series

s an irrational number.
Terms of the series will be constrained by specific reccurence rela-

tions. Several examples are included.

References

[1] ErdGs, P.: Problem 4321, Amer. Math. Mothly, no 64, (1957), p.
47.

22



An extension of three theorems of Nagell

Andrzej Schinzel

It will be proved that an algebraic sum of terms 1/(m + kn) (k =
0,...,x) is an integer only if m = 1, = 0. Nagell in 1924 published
the relevant theorem concerning the arithmetic sum.

A linear recurrence sequence of composite numbers

Jonas Siurys

We prove that for each positive integer k in the range 2 < k < 10 and
for each positive integer k = 79 (mod 120) there is a k-step Fibonacci-
like sequence of composite numbers and give some examples of such
sequences. This is a natural extension of a similar result of Graham[1]
for the Fibonacci-like sequence.
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Distribution functions of sequences

Oto Strauch

In this lecture we present two applications of distribution functions:
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Three dimensional Copula. Applying Weyl’s limit relation we com-
pute

A}EHOO*ZF% Ya(n+1),74(n +2))

4 3 2
q¢* —3q° +3q° +2q + 2
= F d,d,d =
/0 /0 /0 (l’,y,Z) Ty :cg(xay’ Z) 4q4 4(]3 4(]2 )

where v,4(n) is the van der Corput sequence in base ¢, g(z,y,2) is an
asymptotic distribution function of (y4(n),v4(n + 1),74(n + 2)), and
F(z,y,z) = xyz. Here the distribution function g(x,y,z) is a new
copula, cf. [1].

Two-dimensional Benford’s law. Let z, >0, v, >0, n=1,2,...
and Fiy(z,y) = #{n < N;{log, x»,} < = and {logy y»} < y}/N and ex-

press the integers K1, K9 in base b representation as K; = kll)kél) .. k,(«}),

Ky = /~c§2)k§2)...k‘g>. Denote u; = log, (bff—ll), uy = logy (Klifl),

pr1i—1
= log, (bf—ﬁl), vg = logy (ggﬂ) Then we have

I #{x,, has first r digits = K; and y,, has first ro digits = Ky}
im
k00 Ny

= g(uz,v2) + g(u1,v1) — g(uz,v1) — g(u1,v2),

if

k—o0
Thus to solve the problem of digits of (x,,y,) we need full description
of the set of all distribution functions of ({log;, x,}, {log, yn}), see [2].
References
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k-block versus 1-block Parallel Addition in
Non-standard Numeration Systems

Milena Svobodovd

(Joint work with Christiane Frougny, Pavel Heller, Edita Pelantova.)

A positional numeration system is given by a base 8 in C, |5 > 1,
and a finite alphabet A of contiguous integers containing 0. We focus
on the question whether, for a given numeration system, there exists a
parallel algorithm performing addition of numbers with finite (53, .4)-
representations. By parallel algorithms we mean algorithms which per-
form the addition x + y in constant time, independently of the lengths
of the representations of x and y. This is equivalent to say that ad-
dition is a local function (or a sliding block code) from the alphabet
B =A+ Ato A. Recently, it has been shown that for any algebraic
number 3, |3] > 1, which has no conjugates of modulus 1, there exists
an alphabet A allowing parallel addition. In general, the cardinality
of A is unnecessarily large. In 1999, Kornerup suggested to consider
a more general type of parallel algorithms, which, instead of treating
each digit separately, manipulate blocks of digits of length £ > 1. In
that setting addition is a local function from B* to A*.

In this talk we present an easy-to-check property of (,.4) which
guarantees the possibility of block parallel addition. We apply this
result to the bases 8 which are Parry numbers, i.e., numbers whose
Rényi expansion of unity dg(1) = titats. .. is finite or eventually peri-
odic. We show that if  additionally satisfies the property (F) or (PF),
then block parallel addition is possible on the alphabet {0,..., 2t}
or {—ty,...,t1}. Specifically, we prove the usefulness of this con-
cept on the d-bonacci base, where 8 > 1 is a root of the polynomial
f(X) = X? - x4t — x49=2 _ ... _ X — 1, by showing that k-block
parallel addition is possible on the alphabets {0,1,2} and {—1,0,1}
for some convenient k. However, if we require k = 1 (i.e., the standard
parallel algorithm working with single digits), the cardinality of any
alphabet allowing parallel addition in the d-bonacci base must be at
least d + 1.
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Power integral bases in infinite families of quartic fields

Timea Szabo

The existence of power integral bases is a classical topic in algebraic
number theory. It is well known that if a number field admits a power
integral basis of type (1,6,...,6"!) then up to equivalence it admits
only finitely many of them. There is an extensive literature of cal-
culating power integral bases in special algebraic number fields. This
problem is equivalent to solving diophantine equations, so called index
form equations There are efficient algorithms for calculating power in-
tegral bases in lower degree (< 6) and in special higher degree (6,8, 9)
number fields. The problem of power integral bases was also considered
in relative extensions. Algorithms for calculating relative power inte-
gral bases were given in relaive cubic and in relative quartic extensions.
It is an especially delicate problem if we solve the index form equation
not only in a specific number field but in an infinite parametric family
of number fields, where the index form equation is given in a para-
metric form. Such results are known in certain parametric families of
cubic, quartic and quintic number fields. Similar results for calculating
relative power integral bases in infinite parametric families of relative
extensions were not known before. In our thesis we determine all power
integral bases in infinite parametric families of certain quartic number
fields and all relativ power integral bases in certain infinite families of
quartic extensions of quadratic fileds. We utilize the algorithm known
for determining power integral bases in quartic fields and its extension
for calculating relative power integral bases in relative quartic exten-
sions. The relative case has a similar formulation, but it is much more
complicated technically. Both results reduce the index form equation
in quartic fields (resp. relative quartic extensions) to a cubic and some
corresponding quartic Thue equations (resp. relative Thue equations).
In Chapter 2 of our thesis we describe all basic notions in algebraic
number theory connected to power integral bases. In Chapter 3 we de-
scribe our results on infinite parametric families of quartic fields which
appeared in a paper by [.Gaal and T.Szabd. In Chapter 4 we detail

26



our results on infinite parametric families of relative quartic extensions
which are under publication in another paper by I. Gaal and T. Szabd.

On the equation A!B! = C!

Lajos Hajdu, Tamds Szakdcs

Suppose that n! = ailas!---a,!, 7> 2,01 > ay > - > a, > 2. A trivial
exampleis a; = ao!---a,.!—1,n = as! - - - a,!. Dean Hickerson notes that
the only nontrivial examples with n < 410 are 9! = 7!3!312!, 10! = 716! =
7!513! and 16! = 14!5!2! and asks if there are any others. Jeffrey Shallit
and Michael Easter have extended the search to n = 18160 and Chris
Caldwell has shown that any other n is greater than 10°. We investigate
the equation A!B! = C!, where A,B,C ¢ Nt and A < B < C.

Theorem. Let B — A = k fixed. Then the equation A!B! = C!
has only finetly many solutions. C' < «a(k), where a(k) is an explicit
constant only depending on k.

On the common factors in series of consecutive
associated Lucas and Lehmer numbers

Marton Szikszai

We investigate a generalization of a problem originally stated by Pillai
[1] concerning the greatest common divisors in sets of consecutive in-
tegers. We call an integer sequence A = (A4,)5°, Pillai if there exists
a constant G4 such that for every k > (G4 one can find k£ consecutive
terms of A such that none of these terms is coprime to all the others.
This talk links up with previous works of Hajdu and the speaker [2, 3]
in a sense that it continues the characterization of the Pillai property
in specific recurrence sequences.
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We show that in the case of non-degenerate associated Lucas and
Lehmer sequences being a Pillai sequence depends on the parities of
the corresponding parameters only. As a specific example we consider
the well-known sequence of Lucas numbers and show that although it
is not a Pillai sequence, one can find consecutive terms in it such that
none of these terms is coprime to all the others. Further, we show that
it takes at least 171 consecutive Lucas numbers to obtain such a string.
We investigate the more general T-Pillai property as well.
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Irrationality of Lambert series associated with
periodic sequence

Yohei Tachiya

This talk is based on a joint work with Florian Luca.

Let ¢ be an integer with |g| > 1 and {ay, }»>1 be an eventually peri-
odic sequence of rational numbers, not identically zero from some point
on. Then the number Y ° | a,/(¢"™ — 1) is irrational. In particular, if

the periodic sequences {aﬁf)}nzl (i =1,...,m) of rational numbers are
linearly independent over Q, then so are the following m + 1 numbers:
0o i)
Ly :”_1 i=1,....m.

n=1

This generalizes a result of Erdés who treated the case m = 1 and
(1) _
ap’ =1 (n>1).



On a problem of Erdés and Graham

Szabolcs Tengely

Erdés and Selfridge proved that the product of consecutive integers
cannot be a perfect power. Later Erd6s and Graham posed a related
problem about product of two or more disjoint blocks of consecutive
integers. In this talk we consider the Diophantine equation

zz+1)(z+2)(z+3)z+E)(z+k+1)(z+k+2)(z+k+3) =17

where x > 0,k > 0. We note that there is a solution with z = 33
and k = 1647. Walsh gave an argument (based on the ABC conjecute)
which provides reasonable support that the number of solutions is finite.
We prove that if a solution exists, then z < k + 1. We also determine
all solutions with 0 < k& < 109.

On a Generalization of a Problem of Erdés and Graham

Szabolcs Tengely, Nora Varga

Let us define
flx,kd)=x(x+d)--- (x4 (k—1)d).

Erdés and independently Rigge proved that f(x,k,1) is never a
perfect square. A celebrated result of Erdés and Selfridge states that
f(z,k,1) is never a perfect power of an integer, provided x > 1 and
k > 2. That is, they completely solved the Diophantine equation

f(%,k?,d) = yl

with d = 1.
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In this talk we study the Diophantine equation

s+ )(@+2)(x+3) o
(x+a)(x+0b) ’

where a,b € Z, a # b are parameters. We provide bounds for the
size of solutions and an algorithm to determine all solutions (z,y) €
Z2. We use this algorithm to resolve the above equation for a,b €
{-4,-3,-2,-1,4,5,6,7}. The method of proof is based on Runge’s
method.

Finally, we show some cases which are under examination.

On the properties of negative base number systems
associated to confluent Pisot numbers

T. Vivra

(Joint work with Z. Masakova and D. Dombek.)

In positive base number systems many properties are specific for the
class confluent Pisot bases, i.e. zeros of 2% — ma*—! — magh=2 — ... —
mx —n, where k > 1, m > n > 1. The main aspect is that any integer
combinations of non-negative powers of the base with coefficients in
{0,1,...,[B] — 1} is a B-integer, although a sequence of coefficients
may be forbidden in the corresponding number system, in other words

X(B)={> ap | necNo, a; €{0,1,...,[8] = 1}} =Zs. (1)
=0

Confluent Pisot bases are also among the only cases where an explicit
prescription for the substitution generating the spaces in X () has
been provided. The question of description of X () is a special case
of the problem about spectra of real numbers introduced by Erdos et
al. We concentrate on the analogy of (1) in negative base number
systems introduced by Ito and Sadahiro. We show that any integer
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combinations of non-negative powers of the base with coefficients in
{0,1,...,|B]} is a (—/3)-integer, i.e.

X(=B)={> af | n€No, a;€{0,1,...,[8]}} =Z_g,
=0

if and only if 8 is a zero of the above polynomial satisfying m = n
when k is even. It turns out that these are also precisely the bases,
for which the infinite word u_g coding (—/3)-integers has the same
language as that of ug. This fact implies some interesting properties
of the corresponding system, e.g. that the language of u_g is closed
under mirror image. For confluent Pisot bases, numbers with finite
[B-expansions form a subring of real numbers. On the other hand, for
these bases (except the quadratic case) even the number |5] + 1 has
no finite (—f)-representation over the alphabet {0,1,...,[3]}, hence
the analogy does not hold. Also, as a consequence of our result, one
can describe the structure of X (—/).

Several problems on algebraic structures without choice

Eliza Wajch

Let ZW be more or less (Z~ — [Replacement]—Inf) + [Axioms of Logic]
where the notation for ZFC is taken from the excellent book “The
Foundations of Mathematics” by K. Kunen. The purpose of my work is
to define numbers in ZW and to investigate them as deeply as possible
to apply the results obtained to physics. I reject Kunen’s two extra
assumptions of [2] that proper classes do not exist and that all elements
of sets are sets. Similarly as in NBG or M K, I assume that every set
is a class. In the light of my joint work with R. Pietrusiak, an ordinal
number in the sense of Zermelo-von Neumann (in abbr. an ordinal
number) can be defined as a set X of sets such that, for every non-

void subset A of X, the set () z is an element of ANP(X \ A). In
€A
my opinion, it is good to define Peano’s set of natural numbers as an
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ordered pair (N, f) where N is a set and f is an injection from N
into N such that N\ f(N) # @ and N is the unique subset X of N
such that f(X) C X and X \ f(N) # @. A set is called T-infinite if
it is not finite in the sense of Tarski. A set X is called uncountable if
there is a T-infinite subset of X which is not equipollent with X. As
usual, a set is called countable if it is not uncountable. Let w be the
class of all finite ordinal numbers, i.e. of all non-negative integers in
the sense of von Neumann. Let wy be the class of all countable ordinal
numbers. It is neither true nor false in ZW that w # wy. It is true
in ZW that Peano’s set of natural numbers exists if and only if there
exists an uncountable set. Moreover, the following three conditions
are equivalent in ZW +[Replacement]:(1) an uncountable set exists,
(2) w # w1, (3) wy is a set. Other results strictly related to algebraic
structures of numbers will be offered during my talk.

References

[1] H. Herrlich, Aziom of Choice,Springer-Verlag Berlin Heidelberg
2006 .

[2] K. Kunen, The Foundations of Mathematics,College Publications,
London 2009. New York 1976.

[3] G. Priest, An Introduction to Non-classical Logic, Cambridge
Univ. Press 2012.

Circular units of some real cyclic number fields
Milan Werl

Let K be a cyclic field whose genus field in the narrow sense is real
and which is totally ramified at each ramifying prime. Then after a
construction two explicit roots of circular units it is possible to find
a basis for the group Cy(K) of circular units of K defined by Wash-
ington. This basis enables us to compute the index of Cy (K) in the
group F(K) of all units of K using Sinnott’s formula for the index of
the group of Sinnott’s circular units in E(K).
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