Generalization of uniform distribution of sequences by using densities

Ferdinánd Filip and János T. Tóth

Let $\omega = \{x_n\}_{n=1}^{\infty}$ be a given sequence of real numbers. For a subset E of the unit interval I = (0,1), let the set $A(E,\omega)$ be defined as

$$A(E,\omega) = \{ n \in \mathbb{N} | \{x_n\} \in E \}.$$

Definition. Let φ be a density. The sequence $\omega = \{x_n\}_{n=1}^{\infty}$ of real numbers is said to be φ -uniformly distributed modulo 1 if for every pair a, b of real numbers with $0 \le a < b < 1$ we have

$$\varphi(A(\langle a, b), \omega)) = b - a$$
.

In this talk we determine for what kind of φ densities there exsists a sequence which is φ -uniformly distributed modulo 1.