A class of K-fold infinite series and their reduction

Marian Genčev

We present a result that enables the transformation of the general K-fold infinite series of the form

$$\sum_{1 \le n_1 \le n_2 \le \dots \le n_K} \prod_{j=1}^K R(n_j),$$

R(n) is a rational function satisfying some simple conditions, to a special ordinary (i.e., 1-fold) infinite series. We apply this result to the rational function

$$R(n) = \frac{1}{(n+a)^s + b^s}.$$

In this case we call the resulting K-fold sum the generalized multiple Hurwitz zeta-star function and denote it by $\zeta^*(a;b;\{s\}_K)$. We construct a very effective algorithm which enables the complete evaluation of $\zeta^*(a;b;\{2s\}_K)$ for $a\in\{0,-1/2\}$, $b\in\mathbb{R}$ with $b\neq 0$, and $K,s\in\mathbb{N}$ are arbitrary. Several comments to the known evaluations of the ordinary multiple Riemann zeta-star function $\zeta^*(0;0;\{2s\}_K)=\zeta^*(\{2s\}_K)$ corresponding to a=b=0 are given. Also a new identity for $\zeta^*(\{3\}_K)$ is established.