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As a two-dimensional analogue of the Euler-Mascheroni constant γ,
the Masser-Gramain constant δ has been defined as
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Here rk denotes the minimal radius of a compact circular disc in the
Euclidean plane, with arbitrary center, which contains at least k points
with integer coordinates. In 1985, F. Gramain conjectured that δ might
be equal to

δ∗ = 1 + 2γ + log
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)
= 1.822825 . . . ,

where L = 2
∫ 1
0 (1−x

4)−1/2 dx is known as Gauss’ lemniscate constant.
At that time, the only numerical information about δ was due to a com-
putation by F. Gramain & M. Weber which furnished 1.81 < δ < 1.9.
In this talk the history of δ is described briefly, and an account is given

on a recent attack on the problem [1]: Using modern computing power
and a tight approximation to the lattice discrepancy of a circular disc
with arbitrary center, it has been calculated that, up to four decimal
digits, δ ≈ 1.8198. This disproves Gramain’s conjecture.
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