k-block versus 1-block Parallel Addition in Non-standard Numeration Systems

Milena Svobodová

(Joint work with Christiane Frougny, Pavel Heller, Edita Pelantová.)

A positional numeration system is given by a base β in \mathbb{C} , $|\beta| > 1$, and a finite alphabet \mathcal{A} of contiguous integers containing 0. We focus on the question whether, for a given numeration system, there exists a parallel algorithm performing addition of numbers with finite (β, \mathcal{A}) representations. By parallel algorithms we mean algorithms which perform the addition x + y in constant time, independently of the lengths of the representations of x and y. This is equivalent to say that addition is a local function (or a sliding block code) from the alphabet $\mathcal{B} = \mathcal{A} + \mathcal{A}$ to \mathcal{A} . Recently, it has been shown that for any algebraic number β , $|\beta| > 1$, which has no conjugates of modulus 1, there exists an alphabet \mathcal{A} allowing parallel addition. In general, the cardinality of \mathcal{A} is unnecessarily large. In 1999, Kornerup suggested to consider a more general type of parallel algorithms, which, instead of treating each digit separately, manipulate blocks of digits of length $k \geq 1$. In that setting addition is a local function from \mathcal{B}^k to \mathcal{A}^k .

In this talk we present an easy-to-check property of (β, \mathcal{A}) which guarantees the possibility of block parallel addition. We apply this result to the bases β which are Parry numbers, i.e., numbers whose Rényi expansion of unity $d_{\beta}(1) = t_1 t_2 t_3 \dots$ is finite or eventually periodic. We show that if β additionally satisfies the property (F) or (PF), then block parallel addition is possible on the alphabet $\{0, \dots, 2t_1\}$ or $\{-t_1, \dots, t_1\}$. Specifically, we prove the usefulness of this concept on the *d*-bonacci base, where $\beta > 1$ is a root of the polynomial $f(X) = X^d - X^{d-1} - X^{d-2} - \dots - X - 1$, by showing that *k*-block parallel addition is possible on the alphabets $\{0, 1, 2\}$ and $\{-1, 0, 1\}$ for some convenient *k*. However, if we require k = 1 (i.e., the standard parallel algorithm working with single digits), the cardinality of any alphabet allowing parallel addition in the *d*-bonacci base must be at least d + 1.