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Abstracts of talks



Extremes of
R 1
0

R 1
0 F (x, y) dxdyg(x, y)

Vladimír Baláž

(joint work with M.R. Iacó, O. Strauch, R.F. Tichy, S. Thonhauser)

In uniform distribution theory the problem of optimizing the integral∫ 1
0

∫ 1
0
F (x, y) dxdyg(x, y) (1)

over copulas g(x, y) is motivated by computing optimal limit points of
the sequence 1

N

∑N
n=1 F (xn, yn), N = 1, 2, . . . over uniform distribution

sequences xn and yn, n = 1, 2, . . .. But problem of optimizing (1) is
previously well-known as mass transportation problems. It turns out
that the solution of the problem depends on sign of partial derivatives
∂2F (x,y)
∂x ∂y . We have known a solution for the following Fig. 1 and a

criterion for Fig. 2.

(0, 0) (1, 0)

(1, 1)(0, 1)

∂2F (x,y)
∂x ∂y > 0

(0, 0) (1, 0)

(1, 1)(0, 1)

∂2F (x,y)
∂x ∂y > 0

∂2F (x,y)
∂x ∂y < 0

In this paper we solve maximum of (1) in a special Fig. 3 and a
criterion for maximum in Fig. 4.
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Effective results for division points on curves in G2m
Attila Bérczes

Let A := Z[z1, . . . , zr] be a finitely generated domain over Z, and let K
denote its quotient field, and denote by K∗ the multiplicative group of
non-zero elements of K. Let Γ be a finitely generated subgroup of K∗,
and let Γ denote the division group of Γ. Let F (X,Y ) ∈ A[X,Y ] be a
polynomial. In 1960 S. Lang proved that the equation

F (x, y) = 0 in x, y ∈ Γ (1)

has only finitely many solutions, provided F is not divisible by any
polynomial of the form

XmY n − α or Xm − αY n (2)

for any non-negative integersm,n, not both zero, and any α ∈ K∗. The
conditions imposed in Lang’s theorem, i.e., that Γ be finitely generated
and F not be divisible by any polynomial of type (2), are essentially
necessary. Lang’s proof of this result is ineffective. Lang also conjec-
tured that the above equations has finitely many solutions in x, y ∈ Γ
under the same condition (2). In 1974 Liardet proved this conjecture
of Lang, however, the proof of Liardet is also ineffective.

An effective version of Liardet’s Theorem in the number filed case
is due to Bérczes, Evertse, Győry and Pontreau (2009), however, in
the general case no effective result has been proved.

In the talk an effective version of the result of Liardet will be
presented in the most general case. Our result is not only effective,
but also quantitative in the sense that an upper bound for the size of
the solutions x, y ∈ Γ is provided. This result implies that the solutions
of the equation under investigation can be determined in principle.

In the proofs we combine effective finiteness results for these types
of equations over number fields and over function fields, along with a
specialization method developed by Győry in the 1980’s and refined
recently by Evertse and Győry.
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On the equation Un = 2a + 3b + 5c

Csanád Bertók

(joint work with István Pink, Lajos Hajdu and Zsolt Rábai)

In the talk, first we propose a conjecture, similar to Skolem’s conjec-
ture, on a Hasse-type principle for exponential Diophantine equations.
Namely, consider the equation

a1b
α11
11 · · · b

α1l
1l + . . .+ akb

αk1
k1 · · · b

αkl

kl = c

in non-negative integers α11, . . . , α1l, . . . , αk1, . . . , αkl, where ai, bij , are
non-zero integers for every i = 1, . . . , k and j = 1, . . . , l, and c is an
integer. Our conjecture is that if the equation above has no solutions,
then there exists an integer m ≥ 2 such that the congruence

a1b
α11
11 · · · b

α1l
1l + . . .+ akb

αk1
k1 · · · b

αkl

kl ≡ c (mod m)

has no solutions in non-negative integers αij , i = 1, . . . , k, j = 1, . . . , l.
In the talk we present a result showing that in a sense, the con-

jecture is valid for “almost all” equations. Further, based upon the
conjecture we propose a general method for the solution of exponen-
tial Diophantine equations, relying on a generalization of a result of
Erdős, Pomerance and Schmutz concerning Carmichael’s λ function.

Finally, we illustrate that our method works not only in Z, but also
in the ring of integers of Q(α) (where α is a real algebraic number) by
generalizing a result of D. Marques and A. Togbé and solving a problem
of F. Luca and S. G. Sanchez. Let Un = A·Un−1+B ·Un−2 (n ≥ 2) with
A,B ∈ Z and initial terms U0, U1 ∈ Z be a binary sequence. If a, b, c
are non-negative integers, then we give all solutions of the equations

Un = 2a + 3b,

Un = 2a + 3b + 5c,

in the case when (A,B,U0, U1) = (1, 1, 0, 1), (1, 1, 2, 1), (2, 1, 0, 1),
(2, 1, 2, 2).
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Statistical limit points and
Baire category of sequences

József Bukor and János T. Tóth

The number λ is a statistical limit point of the sequence (xn), if λ is
the limit of a subsequence (xkn) such that the set of indices kn has a
positive upper asymptotic density.

Let s denote the Fréchet metric space of all real sequences. Denote
by s0 the set of all real sequences, which statistical limit points is not
equal to the set of all real numbers.

The main result of the talk is that s0 is a set of the first Baire
category in the space s.

Continued fractions and Stern polynomials

Karl Dilcher

(joint work with Larry Ericksen)

By using specific subsequences of two different types of generalized
Stern polynomials, we obtain several related classes of finite and infinite
continued fractions involving zt

j
in their partial numerators, where z

is a complex variable and t ≥ 2 an integer. The talk concludes with
some additional related results.
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Hyperbinary expansions and Stern polynomials

Larry Ericksen

(joint work with Karl Dilcher)

Two different types of generalized Stern polynomials at(n; z) are ob-
tained using recursions and generating functions. These polynomials
in variable z reduce to the well-known Stern (diatomic) sequence a(n)
when z = 1. A hyperbinary expansions of an integer n is an expansion
of n as a sum of powers of 2, each power being used at most twice.
Integers a(n + 1) in the Stern sequence count the number of hyper-
binary expansions of n. In this talk, we derive the actual set of all
hyperbinary expansions of n.

Properties of the Stern polynomials associated with these hyper-
binary expansions are presented. The structures of certain Stern poly-
nomials are given in terms of Jacobi polynomials. The talk concludes
with an introductory analysis of the Stern polynomials being repre-
sented by continued fractions.

Equal values of Combinatorial numbers

Judit Ferenczik

(joint work with Ákos Pintér)

Let Snk be the Stirling number of the second kind with positive integer
parameters n and k, i. e. Snk is the number of partition of n ele-
ments into k non-empty sets. We formulate the following conjecture
concerning common values of Stirling numbers.

Conjecture. Let 1 < a < b fixed integers. Then all the solutions
of equation Sxa = Syb with x > a, y > b are S65 = S52 = 15 and S9190 =
S152 = 4095.

We prove the conjecture for max(a, b) < 300, extending our earlier
result. The proof is based on Baker-method, elementary estimations
and grid computational technique.
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The structure of weighted densities

Ferdinánd Filip, Peter Csiba and János T. Tóth

Density is one of the possibilities to measure how large a subset of
the set of positive integers is. The best known type of densities are
weighted densities.

Let f : N→ (0,∞) be a weight function such that the conditions

∞∑
n=1

f(n) =∞

lim
n→∞

f(n)∑n
i=1 f(i)

= 0

are satisfied.
For A ⊂ N function χA denote the characteristic function of the

set A.
Define

df (A) = lim inf
n→∞

n∑
i=1

f(i)χA(i)

n∑
i=1

f(i)
, df (A) = lim sup

n→∞

n∑
i=1

f(i)χA(i)

n∑
i=1

f(i)

as the lower and upper f -densities of A. In the case when df (A) =
df (A) we say that A has f -density df (A). The famous f -densities are
the asymptotic and logarithmic density.

We present relations between weighted densities determined by
several weight functions.
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Solving Thue equations

István Gaál

Let F (x, y) ∈ Z[x, y] be a homogeneous polynomial of degree ≥ 3,
irreducible over Q, and let 0 6= m ∈ Z. The Thue equation

F (x, y) = m in x, y ∈ Z

plays an important role in the theory and applications of Diophan-
tine equations. The first general finiteness results on the number of
solutions, the first applications of Baker’s method, the first reduction
algorithm etc. were all connected with Thue equations and were later
successfully applied to other important classes of Diophantine equa-
tions.

In our talk we give a brief survey of these results and explain a new
efficient algorithm to calculate ”small” solutions of relative Thue equa-
tions. This method had already applications in describing generators
of power integral bases in certain algebraic number fields.

A class of restricted sum formulas
for the multiple Riemann ζ?-values

Marian Genčev

In our contribution, we present a result that clarifies the evaluation of
the so-called restricted sum formulas for the multiple ζ?-values with
general even arguments, i.e.,∑

∑K
j=1 cj=c

cj∈N

ζ?(2sc1, . . . , 2scK), (1)
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where c, s,K are arbitrary positive integers with c ≥ K, and

ζ?(s1, . . . , sK) :=
∑

n1≥n2≥···≥nK≥1

K∏
j=1

1

n
sj
j

is the multiple Riemann ζ?-function. This function is a naturally gen-
eralization of the usually Riemann ζ-function (it suffices to put K = 1
in the definition of ζ?(s1, . . . , sK)). Our evaluation formulas for the
restricted sums (1) involve only finite number of elementary terms like
Bernoulli numbers, multinomial coefficients and the values of the co-
sine function.

Effective results for Diophantine
equations over finitely generated domains

Kálmán Győry

(joint work with Jan-Hendrik Evertse and Attila Bérczes)

We present some recent effective finiteness results on unit equations,
Thue equations, hyper- and superelliptic equations and discriminant
equations.

Non-Adjacent Digit Expansions

Clemens Heuberger

Motivated by applications in cryptography, we consider redundant
digit expansions to various bases. The redundancy allows to decrease
the weight, i.e., the number of non-zero digits, and therefore the exe-
cution time for scalar multiplication algorithms in abelian groups such
as the point group of an elliptic curve.

We discuss the questions of existence and optimality and analyse
the expected weight.
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Universal quadratic forms over number fields

Vítězslav Kala

A universal form is a positive definite quadratic form with integral
coefficients which represents all positive numbers – a classical example
over the integers is the sum of four squares x2 + y2 + z2 + w2. I shall
discuss some recent results (joint with Valentin Blomer) concerning the
number of variables required by a universal form over a real quadratic
field. In particular, for a given positive integer n, one can use continued
fractions to construct infinitely many such fields which admit no n-ary
universal forms.

Arithmetic of Bethe Ansatz
and Gaussian polynomials

Piotr Krasoń

(joint work with Jan Milewski)

We prove a congruence relation for the sums of coefficients of Gaussian
polynomials. This calculation is in fact inspired by the famous model
in physics of Bethe Ansatz and yields the number of elements in mod-
uli classes of certain fibers of a natural fibration associated with this
model. We show that, suitably interpreted, our calculation of num-
ber of elements in moduli classes of sums of restricted partitions is
in fact equivalent to finding the number of elements in these special
fibers. The calculation is done for prime numbers. We also give some
generalizations of our main result

18



Finite beta-expansions with negative bases

Zuzana Krčmáriková

We consider positional numeration system with negative base (−β)
introduced by Ito and Sadahiro. We focus on aritmetical properties of
such systems when β is a cubic Pisot unit. That means β > 1 is a root
of polynomial

p(x) = x3 − ax2 − bx± 1,

where |b − 1| < a ± 1 and (1 − b) < ±(1 ± a). For these bases, we in-
vestigate when the set Fin(−β) of numbers with finite (−β)-expansion
forms a ring. Moreover, we show that when the expansion of − β

β+1 is
finite, then Fin(−β) is not a ring.

On a theorem of Thaine

Radan Kučera

Let K be a real abelian number field, G = Gal(K/Q) its Galois group,
and p be a prime number. Let E be the group of units of the ring of
integers of K and let C be the Sinnott group of circular units of K.
Let Cl(K) be the ideal class group of K and let (E/C)p and Cl(K)p
be the p-Sylow subgroups of the corresponding Z[G]-modules.

In 1988, Francisco Thaine proved that if p - [K : Q] then

AnnZ[G]((E/C)p) ⊆ 2 ·AnnZ[G](Cl(K)p).

The aim of this talk is to describe a stronger variant of this theorem
which can be proven by a modification of Thaine’s method.
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Upper and lower densities – Part II

Paolo Leonetti

An upper density (on Z) is a real-valued set function µ? on the power
set of Z that is monotonic, subadditive, (−1)-homogeneous, and trans-
lational invariant, and for which µ?(Z) = 1. In this talk, we will prove
that the image of the density induced by an upper density is the whole
interval [0, 1], study if specific sets X of integers are meager, namely
µ?(X) = 0 for every upper density µ?, and discuss various “structural
properties” of upper and lower densities. If time permits, we will also
present a list of open questions.

Explicit upper bounds for residues
of Dedekind zeta functions

Stéphane Louboutin

Explicit bounds on the residues at s = 1 of the Dedekind zeta-functions
of number fields (in terms of their degree and of the logarithm of the
absolute value of their discriminant) have long been known. They date
back to C. L. Siegel and E. Landau. The author gave a neat explicit
bound in 2000, the best known bound until recently. In 2012 X. Li
improved upon this bound. His results, although effective, were not
explicit. Wee make one of his two bounds explicit and determine when
it is the best known one.
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On the Arithmetic Behavior
of Transcendental Functions

Diego Marques

The study of the arithmetic behavior of transcendental functions at
complex points has attracted the attention of many mathematicians
for decades. The first result concerning this subject goes back to 1884,
when Lindemann proved that the transcendental function ez assumes
transcendental values at all nonzero algebraic point. In 1886, Strauss
tried to prove that an analytic transcendental function cannot be ratio-
nal at all rational points in its domain. However, in 1886, Weierstrass
supplied him with a counter-example and also stated (without proof)
that there are transcendental entire functions which assume algebraic
values at all algebraic points. This assertion was proved in 1895 by
Stäckel who established a much more general result. Subsequent ad-
vances were made by Stäckel, Faber, Mahler, Van der Poorten, etc. In
particular, Mahler (in his 1976 book and in a 1984 paper) raised some
questions about this subject.

In this talk, we shall provide a brief overview of the classical results
in this field as well as our advances related to these Mahler’s questions
(in particular, the solution for two of them). This is related to joint
works with Moreira, Ramirez and Schleischitz.

New number fields with known p-class tower

Daniel C. Mayer

Denote by p a prime, by K a number field with p-class group Clp(K) '
(p, p), by L1, . . . , Lp+1 the unramified cyclic extensions of degree p ofK,
by κ(K) the p-capitulation type of K in L1, . . . , Lp+1, and by `p(K),
resp. G = Gal(F∞p (K)|K), the length, resp. the group, of the p-class
tower of K.
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In the first two theorems, let p = 3, and let K = Q(
√
d), d > 0, be

a real quadratic field.

Theorem 1. (Mayer) Suppose that Cl3(L1) ' (27, 9), and Cl3(Lj) '
(9, 3) for 2 ≤ j ≤ 4. Assume that κ(K) neither contains a total
capitulation nor a 2-cycle. If there exists an unramified cyclic cubic
extension M of some Lj , 2 ≤ j ≤ 4, with Cl3(M) ' (27, 3), resp.
Cl3(M) ' (9, 3), then `3(K) = 3, G ' 〈729, 54〉 − #2; 2|4|6 (e.g. d =
342 664), resp. `3(K) = 2, G ' 〈2 187, 302|304|306〉 (e.g. d = 4 760 877).

Theorem 2. (Mayer) Suppose that Cl3(Lj) ' (3, 3, 3) for 1 ≤ j ≤ 3,
and Cl3(L4) ' (9, 3). Let τ (1)(Lj) = [τ0(Lj); τ1(Lj)] be the IPAD
(index-p abelianization data) of Lj for 1 ≤ j ≤ 4. (See [1].)

If τ (1)(L1) = [13; (212, (13)3, (12)9)], τ (1)(L2) = [13; (212, (21)12)],
τ (1)(L3) = [13; ((212)4, (22)9)], and τ (1)(L4) = [21; (212, (21)3)], then
G ' 〈2 187, 273〉 (e.g. d = 957 013).

If τ (1)(L1) = [13; (212, (13)3, (12)9)], τ (1)(Lj) = [13; (212, (21)12)] for
2 ≤ j ≤ 3, and τ (1)(L4) = [21; (212, (31)3)], then G ' 〈2 187, 271|272〉
(e.g. d = 2 023 845).

If τ (1)(L1) = [13; ((212)4, (12)9)], τ (1)(Lj) = [13; (212, (21)12)] for
2 ≤ j ≤ 3, and τ (1)(L4) = [21; (212, (21)3)], then G ' 〈2 187, 270〉 (e.g.
d = 2 303 112). In each of the three cases, `3(K) = 3.

In the next two theorems, let p = 5.

Theorem 3. (Kishi, Mayer) Let K = Q((ζ − ζ−1)
√
d) be a cyclic

quartic field with ζ = exp( 152πi) and d > 0, gcd(d, 5) = 1. If κ(K) is
a 4-cycle (e.g. d = 457), resp. the identity permutation (e.g. d = 581),
then `5(K) = 2, and G ' 〈3 125, 11〉, resp. G ' 〈3 125, 14〉.

Theorem 4. (Ayadi, Oumazouz, Mayer) LetK be a cyclic quintic field
with conductor f divisible by two primes p, q which are mutual quintic
residues, and let γ be generator of a non-trivial primitive ambiguous
principal ideal of K with norm NK|Q(γ) = pequ. If e = 0 or u = 0,
then `5(K) = 2 (e.g. f = 5 921 = 31 · 191).

Reference. [1] D. C. Mayer, Index-p abelianization data of p-class
tower groups, Adv. Pure Math. 5 (2015), no. 5, 286–313, DOI
10.4236/apm.2015.55029, Special Issue on Number Theory and Cryp-
tography, April 2015.
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Bounds for exponential sums combining
Van der Corput’s and Huxley’s method

Werner Georg Nowak

The classic Van der Corput’s method to estimate exponential sums
consists of combining Poisson’s formula followed by the asymptotic
evaluation of exponential integrals (“A-step”), and a skillful applica-
tion of Cauchy’s inequality (“B-step”). In its simplest form it tells us
what follows: Let be given throughout two real parameters M ≥ 1 and
T > 0 with |log T | � logM , and a real function F on an interval I of
length M , satisfying

F (j) �M−jT , (1)

with j = 2. Then it follows that, for any interval I∗ ⊆ I,

EF,I∗ :=
∑
n∈I∗

e2πiF (n) � T 1/2 +MT−1/2 .

Applying Van der Corput’s differencing lemma (also known as Weyl’s
B-step), it follows that (1) holding true for j = 3 implies that

EF,I∗ �M1/2T 1/6 +MT−1/6 .

Of course, the application of the B-step can be iterated.

More recently, M. Huxley and others developed an entirely new
approach called the Discrete Hardy-Littlewood method. For the single
exponential sum, its sharpest result says that

EF,I∗ �M1/2T 32/205+ε ,

provided that (1) is true for j = 2, 3, 4 - however, under the restriction
that the parameters satisfy

T 141/328+ε �M � T 181/328 . (2)

In this talk it is described how both types of results can be com-
bined to obtain sharp bounds for the single exponential sum. Under
the conditions just stated, apart from (2), it can be proved that

M−εEF,I∗ �M
1
2 T

32
205 + T

751
1968 +M

871
1086 +M T−1/2 .
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Applying the differencing lemma once, one obtains

M−εEF,I∗ �M
679
948 T

16
237 +M

1
2 T

751
5438 +M

1957
2172 +M T−1/4 ,

under the condition that (1) is true for j = 3, 4, 5. Again, the B-step
can be iterated.

Finally, we mention a few applications; see also [3].
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A Ramsey type problem for
linear recurrence sequences

Gábor Nyul

(joint work with Bettina Rauf and Csanád Bertók)

A well-known Ramsey type theorem of van der Waerden states that
for any positive integers k and r, if we colour the positive integers
with r colours, then there exists a strictly increasing monochromatic
arithmetic progression of length k. In our talk, we investigate the
similar problem for linear recurrence sequences.

H. Harborth and S. Maasberg studied this problem for sequences
satisfying the Fibonacci recurrence. We extend their results for higher
order linear recurrence sequences with positive integer coefficients, and
we also study binary linear recurrences having coefficients of both signs.
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Non-standard numeration systems:
the algorithmic point of view

Edita Pelantová

We study algorithms for addition, multiplication and division on the
set of numbers having finite representation in a positional numeration
system defined by a base β in C and a finite digit set A of contiguous
integers containing 0. For a fixed base β, we discuss the question of the
alphabet allowing to perform addition in constant time independently
of the length of representation of the summands. Such addition is a
necessarry ingredient in on-line algorithms for multiplication and divi-
sion. We focus on the properties of algebraic bases β which influence
the efectivity of these on-line algorithms. Using the base β = 3+

√
5

2
and the alphabet {−1, 0, 1} we demonstrate that a system with an ir-
rational base can be more suitable for computation than a system with
an integer base.

On a clustering of the integers

Attila Pethő

Our talk is based on joint works with S. Akiyama (Tsukuba University,
Japan) and L. Aszalós, and L. Hajdu (University of Debrecen).

Let A be a finite non-empty set, and let ∼ be a symmetric binary
relation on A. Consider a partition P of A. Two distinct elements
a, b ∈ A are said to be in conflict with respect to the partition P
either if they belong to the same class of P , but a � b, or they belong
to different classes of P , although a ∼ b. The goal of correlation
clustering is to find a partition with minimal number of conflicts.

First we show some general, density results. Next we concentrate
on the case when A is the set of positive integers as well as the set of
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S-integers with a finite set of primes, which are equipped with the co-
primality relation. It turns out that the largest class of the correlation
clustering behaves completely differently.

On the equation 1k + 2k + . . .+ xk = yn for fixed x

István Pink

We provide all solutions of the title equation in positive integers x,k,y,n
with 1 ≤ x < 25 and n ≥ 3. For these values of the parameters, our
result gives an affirmative answer to a related, classical conjecture of
Schäffer. In our proofs we combine several tools: Baker’s method
(in particular, sharp bounds for the linear combinations of logarithms
of two algebraic numbers), polynomial-exponential congruences and
computational methods.

Idempotents and number theory

Štefan Porubský

Idempotents (elements satisfying the identity e·e = e) represent an im-
portant structural element in semigroups (algebraic structure endowed
with an associative binary operation). Existence of idempotents is ac-
tually equivalent with the existence of subgroups in a given semigroup.
More precisely, every identity elements of a subgroup is an idempo-
tent, and conversely around every idempotents these lives at least one
sub(semi)group of the given semigroup (e.g. the cyclic (semi)group
generated by an element a power of which is the given idempotent).
Though the complex of such subgroups and subsemigroups could be
rich and mirrors arithmetic properties of connected algebraic struc-
tures, their role was studied very sporadically hitherto. For instance, in
the semigroup of residue classes modulo n we have 2r distinct idempo-
tents and connected complexes of subgroups and subsemigroups, where
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r is the number of distinct prime divisors of n. Besides the well-known
group of the reduced residue classes connected with idempotent 1 and
the semigroup of nilpotent residue classes around 0, there are addi-
tional ones provided r > 1. A typical demonstration example of their
presence is the analysis of the classical Euler-Fermat theorem, Bauer
identical congruence or Wilson Theorem given by Štefan Schwarz and
enabling him to deduce many variants of these important elementary
results in multiplicative semigroups of various matrix structures, of
power sets of a finite set or of binary relations on a finite set. His
approach is capable of a wide generalization giving a way to extend
these results to more general commutative rings appearing in number
theory as it was done by the author of this talk and M. Laššák. In this
survey talk we show some of these applications as well some new ones,
e.g. in a solution of a simple linear congruence ax ≡ b (mod n).

Power integral bases in pure quartic number fields

László Remete

A number field K of degree n is monogene if there exist an integer
ϑ ∈ K such that ZK = Z[ϑ], that is {1, ϑ, ϑ2, . . . , ϑn−1} is an integral
basis (so called power integral basis) in K.

We consider the problem of monogenity and generators of power
integral bases in pure quartic fields K = Q( 4

√
m) where m is a square

free integer with m ≡ 2, 3 (mod 4). Set α = 4
√
m. For 1 < m < 107

we determine all generators

ϑ = a+ xα+ yα2 + zα3

of power integral bases of K where a, x, y, z ∈ Z with

max(|x|, |y|, |z|) < 101000.

This extensive computation was performed on a supercomputer.
We extended these results also to the relative case. Let d be one

of d = 3, 7, 11, 19, 43, 67, 163, let L = Q(i
√
d). Let m ≡ 2, 3 (mod 4),

assume (d,m) = 1 and set α = 4
√
m. For 1 < m ≤ 5000 we calculate
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all generators ϑ = A+Xα+Y α2+Zα3 of relative power integral bases
of K over L with A,X, Y, Z ∈ ZL with max(|X|, |Y |, |Z|) < 10500. We
also proved that these octic fields K does not admit any generators of
(absolute) power integral bases of the form

ϑ = A+ ε(Xα+ Y α2 + Zα3)

where A,X, Y, Z ∈ ZL, ε a unit in L and

max(|X|, |Y |, |Z|) < 10500.

On simple linear recurrences

Andrzej Schinzel

Let K be a number field and un a simple linear recurrence of order k
defined over K. We shall consider for k = 2, 3, 4 the following problem:
if for almost all prime ideals p of K there are elements un divisible by p,
does it follow that un = 0 for a certain integer n?

Identically Distributed Second-Order
Linear Recurrences Modulo p

Lawrence Somer

Let w(a,−1) denote the second-order linear recurrence satisfying the
recursion relation

wn+2 = awn+1 − wn ,

where a and the initial terms w0, w1 are all integers. Let p be an odd
prime. The restricted period hw(p) of w(a,−1) modulo p is the least
positive integer r such that wn+r ≡ Mwn (mod p) for all n ≥ 0 and
some nonzero residue M modulo p. We distinguish two recurrences, the
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Lucas sequence of the first kind u(a,−1) and the Lucas sequence of the
second kind v(a,−1), satisfying the above recursion relation and having
initial terms u0 = 0, u1 = 1 and v0 = 2, v1 = a, respectively. We show
that if u(a1,−1) and u(a2,−1) both have the same restricted period
modulo p, or equivalently, the same period modulo p, then u(a1,−1)
and u(a2,−1) both have the same distribution of residues modulo p.
Similar results are obtained for Lucas sequences of the second kind.

Uniform Distribution and
the Riemann Zeta-Function

Joern Steuding

Recent applications of uniform distribution theory to the Riemann
zeta-function provide new insights in the analytic behaviour inside the
critical strip. It has been shown that, for every fixed complex num-
ber a, the imaginary parts of the solutions to the equation ζ(s) = a
(in ascending order) are uniformly distributed modulo one. Further-
more, it has been proved that the argument of ζ(1/2+ it) for t from an
arithmetic progression is uniformly distributed modulo π if there are
not too many ordinates of zeta zeros in this arithmetic progression.

(Some of the results are joint work with Dr. Selin Selen Özbek
from Antalya.)

Distribution functions of sequences

Oto Strauch

In this lecture we present three applications of distribution functions
of sequences.
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1. The sequence ξ(3/2)n mod 1. Every distribution function g(x)
of ξ(3/2)n mod 1 satisfies

g
(x

2

)
+ g
(x+ 1

2

)
− g
(1

2

)
= g
(x

3

)
+ g
(x+ 1

3

)
+ g
(x+ 2

3

)
− g
(1

3

)
− g
(2

3

)
, (1)

for x ∈ [0, 1]. The following solution g(x) of (1)

g(x) =



0 for x ∈ [0, 1/6],

2x− 1/3 for x ∈ [1/6, 3/12],

4x− 5/6 for x ∈ [3/12, 5/18],

2x− 5/18 for x ∈ [5/18, 2/6],

7/18 for x ∈ [2/6, 8/18],

x− 1/18 for x ∈ [8/18, 3/6],

8/18 for x ∈ [3/6, 7/9],

2x− 20/18 for x ∈ [7/9, 5/6],

4x− 50/18 for x ∈ [5/6, 11/12],

2x− 17/18 for x ∈ [11/12, 17/18],

x for x ∈ [17/18, 1]

satisfies Mahler’s conjecture in the following sense: K. Mahler (1968)
conjectured that there exists no ξ ∈ R+ such that 0 ≤ {ξ(3/2)n} < 1/2
for every n = 0, 1, 2, . . . Mahler’s conjecture follows from the conjec-
ture: Let g(x) be a distribution function satisfying (1). Then g(x) is
different of g(x) = 1 for x ∈ (1/2, 1).

2. The first digit problem. Let limi→∞{logq(Ni)} = w, then for
integer sequence n = 1, 2, . . . we have

lim
i→∞

#{n ≤ Ni ; first s digits of n are k1k2 . . . ks}
Ni

= gw
(
logq k1.k2k3 . . . (ks + 1)

)
− gw

(
logq k1.k2k3 . . . ks

)
where

gw(x) =
1
qw

qx − 1
q − 1

+
qmin(x,w) − 1

qw

is a distribution function of the sequence logq n mod 1.
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3. Four-dimensional Copula. Applying Weyl’s limit relation we
have

lim
N→∞

1
N

N−1∑
n=0

F
(
γq(n), γq(n+ 1), γq(n+ 2), γq(n+ 3)

)
=
∫ 1
0

∫ 1
0

∫ 1
0

∫ 1
0
F (x, y, z, u) dxdydzdug(x, y, z, u)

=
1
2

+
3
q
− 6
q2
, (2)

where

• γq(n) is the van der Corput sequence in base q,
• g(x, y, z, u) is an asymptotic distribution function of(

γq(n), γq(n+ 1), γq(n+ 2), γq(n+ 3)
)
,

• and F (x, y, z, u) = max(x, y, z, u).

Here the distribution function g(x, y, z, u) is a new copula.

Comments. Result 1. is one of the first nontrivial applications of
the distribution function theory. Result 2. is a unique solution of a
problem that the sequence n = 1, 2, 3, . . . does not satisfy Benford’s
law. In Result 3. a referee described a general method for computing
integral of the type (2), but 1. and 2. are given a basis for individual
study of g(x, y, z, u).

Power integral bases in quartic
fields and quartic extensions

Tímea Szabó

The existence of power integral bases is a classical topic in algebraic
number theory. It is well known that if a number field admits a power
integral basis of type (1, θ, . . . , θn−1) then up to equivalence it admits
only finitely many of them. There is an extensive literature of cal-
culating power integral bases in special algebraic number fields. This
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problem is equivalent to solving diophantine equations, so called index
form equations There are efficient algorithms for calculating power in-
tegral bases in lower degree (≤ 6) and in special higher degree (6, 8, 9)
number fields. The problem of power integral bases was also consid-
ered in relative extensions. Algorithms for calculating relative power
integral bases were given in relative cubic and in relative quartic ex-
tensions. It is an especially delicate problem if we solve the index form
equation not only in a specific number field but in an infinite para-
metric family of number fields, where the index form equation is given
in a parametric form. Such results are known in certain parametric
families of cubic, quartic and quintic number fields. Similar results for
calculating relative power integral bases in infinite parametric families
of relative extensions were not known before.

In this talk we present the resolution of the index form equations
in two families of totally complex biquadratic fields depending on two
parameters and prove that up to equivalence, they admit only one
generator of power integral bases. Note that these are the first families
of number fields with two parameters where all generators of power
integral bases determined.

In the second half of my talk considering infinite parametric fam-
ilies of octic fields, that are quartic extensions of quadratic fields, we
describe all relative power integral bases of the octic fields over the
quadratic subfields and then we check if there exist corresponding gen-
erators of absolute power integral bases.

Perfect powers in products of terms of an EDS

Márton Szikszai

Let B = (Bn)∞n=0 be an elliptic divisibility sequence and consider the
diophantine equation

BnBn+d . . . Bn+(k−1)d = yl

in variables n, d, k, y, l. In this talk we will discuss the solution of the
above equation. Further, the working of our method will be presented
through several concrete examples. Several comments on the efficient
computation will also be given.
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Linear independence results for the
reciprocal sums of Fibonacci numbers
associated with Dirichlet characters

Yohei Tachiya

(joint work with Hiromi Ei and Florian Luca)

We refine the methods of Chowla and Erdős who deduced the irra-
tionality of certain Lambert series and give linear independence results
for various infinite series; for instance, the numbers

1,
∞∑
n=1

χj(n)
Fn

(j = 1, 2, . . .)

are linearly independent over Q(
√

5), where χj are certain nonprinci-
pal real Dirichlet characters and {Fn}n≥0 is the sequence of Fibonacci
numbers. We also give irrationality results for the reciprocal sums of
binary recurrences associated with another multiplicative functions.

Diophantine problems and arithmetic progressions

Szabolcs Tengely

In this talk we report on recent research related to three Diophan-
tine problems. First we consider a special case of the so-called Erdős-
Graham problem. Erdős and Graham asked if the Diophantine equa-
tion

r∏
i=1

f(xi, ki, 1) = y2

has, for fixed r ≥ 1 and {k1, k2, . . . , kr} with ki ≥ 4 for i = 1, 2, . . . , r,
at most finitely many solutions in positive integers (x1, x2, . . . , xr, y)
with xi + ki ≤ xi+1 for 1 ≤ i ≤ r− 1. Ska lba provided a bound for the
smallest solution and estimated the number of solutions below a given
bound. Ulas answered the above question of Erdős and Graham in the
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negative when either r = ki = 4, or r ≥ 6 and ki = 4. Tengely proved
that the only solution (x, y) ∈ N2 of

x(x+1)(x+2)(x+3)(x+k)(x+k+1)(x+k+2)(x+k+3) = y2, (1)

with 4 ≤ k ≤ 106 is

(x, y) = (33, 3361826160)

with k = 1647. In this talk we provide more precise answer to this
problem.

Zhang and Cai deal with the equations

(x− 1)x(x+ 1)(y − 1)y(y + 1) = (z − 1)z(z + 1),

(x− b)x(x+ b)(y − b)y(y + b) = z2,

where b is a positive even number. In case of the first equation they
prove that there exist infinitely many non-trivial positive integer solu-
tions. In case of the second equation they obtain similar result. They
also pose two questions related to the above equations.

Question 1. Are all the nontrivial positive integer solutions of
(x − 1)x(x + 1)(y − 1)y(y + 1) = (z − 1)z(z + 1) with x ≤ y given by
(F2n−1, F2n+1, F 22n), n ≥ 1?

Question 2. Are there infinitely many nontrivial positive integer
solutions of (x− b)x(x+ b)(y − b)y(y + b) = z2 if b ≥ 3 odd?

We provide some partial results related to the above questions.

Upper and lower densities – Part I

Salvatore Tringali

We present an axiomatic theory of upper and lower densities on the
integers that relies on a package of five axioms a real-valued set func-
tion µ? on the power set of Z is required to satisfy: monotonicity, sub-
additivity, (−1)-homogeneity, and translational invariance, together
with the normalization condition µ?(Z) = 1. In particular, we will dis-
cuss and prove the mutual independence of these axioms, and provide
a number of examples for which they are all satisfied (examples include
the upper asymptotic, upper Banach, upper logarithmic, upper Buck,
and upper analytic densities).
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Primitive solutions of Diophantine equations
involving squares and fifth powers

Maciej Ulas

We present some result concerning solvability in integers of the Dio-
phantine equations of the form T 2 = G(X), X = (X1, . . . , Xm), where
m = 3 or m = 4 and G is a specific homogenous quintic form. First,
we prove that if F (x, y, z) = x2+y2+az2+bxy+cyz+dxz ∈ Z[x, y, z]
and (b − 2, 4a − d2, d) 6= (0, 0, 0), then for all n ∈ Z \ {0} the Dio-
phantine equation t2 = nxyzF (x, y, z) has a solution in polynomials
x, y, z, t with integer coefficients, with no polynomial common factor
of positive degree. In case a = d = 0, b = 2 we prove that there are
infinitely many primitive integer solutions of the Diophantine equation
under consideration. As an application of our result we prove that for
each n ∈ Q \ {0} the Diophantine equation

T 2 = n(X51 +X52 +X53 +X54 )

has a solution in co-prime (non-homogenous) polynomials in two vari-
ables with integer coefficients. We also present a method which some-
times allows us to prove the existence of primitive integer solutions of
more general quintic Diophantine equation of the form T 2 = aX51 +
bX52 + cX53 + dX54 , where a, b, c, d ∈ Z. In particular, we prove that for
each m,n ∈ Z \ {0}, the Diophantine equation

T 2 = m(X51 −X52 ) + n2(X53 −X54 )

has a solution in polynomials which are co-prime over Z[t]. Moreover,
we show how a modification of the presented method can be used in
order to prove that for each n ∈ Q \ {0}, the Diophantine equation

t2 = n(X51 +X52 − 2X53 )

has a solution in polynomials which are co-prime over Z[t].
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