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In uniform distribution theory the problem of optimizing the integral∫ 1

0

∫ 1

0
F (x, y) dxdyg(x, y) (1)

over copulas g(x, y) is motivated by computing optimal limit points of
the sequence 1N

∑N
n=1 F (xn, yn), N = 1, 2, . . . over uniform distribution

sequences xn and yn, n = 1, 2, . . .. But problem of optimizing (1) is
previously well-known as mass transportation problems. It turns out
that the solution of the problem depends on sign of partial derivatives
∂2F (x,y)
∂x ∂y . We have known a solution for the following Fig. 1 and a
criterion for Fig. 2.
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In this paper we solve maximum of (1) in a special Fig. 3 and a
criterion for maximum in Fig. 4.
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