On a theorem of Thaine

Radan Kučera

Let K be a real abelian number field, $G = \operatorname{Gal}(K/\mathbb{Q})$ its Galois group, and p be a prime number. Let E be the group of units of the ring of integers of K and let C be the Sinnott group of circular units of K. Let $\operatorname{Cl}(K)$ be the ideal class group of K and let $(E/C)_p$ and $\operatorname{Cl}(K)_p$ be the p-Sylow subgroups of the corresponding $\mathbb{Z}[G]$ -modules.

In 1988, Francisco Thaine proved that if $p \nmid [K : \mathbb{Q}]$ then

$$\operatorname{Ann}_{\mathbb{Z}[G]}((E/C)_p) \subseteq 2 \cdot \operatorname{Ann}_{\mathbb{Z}[G]}(\operatorname{Cl}(K)_p).$$

The aim of this talk is to describe a stronger variant of this theorem which can be proven by a modification of Thaine's method.