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The classic Van der Corput’s method to estimate exponential sums
consists of combining Poisson’s formula followed by the asymptotic
evaluation of exponential integrals (“A-step”), and a skillful applica-
tion of Cauchy’s inequality (“B-step”). In its simplest form it tells us
what follows: Let be given throughout two real parameters M ≥ 1 and
T > 0 with |log T | � logM , and a real function F on an interval I of
length M , satisfying

F (j) �M−jT , (1)

with j = 2. Then it follows that, for any interval I∗ ⊆ I,

EF,I∗ :=
∑
n∈I∗

e2πiF (n) � T 1/2 + MT−1/2 .

Applying Van der Corput’s differencing lemma (also known as Weyl’s
B-step), it follows that (1) holding true for j = 3 implies that

EF,I∗ �M1/2T 1/6 + MT−1/6 .

Of course, the application of the B-step can be iterated.

More recently, M. Huxley and others developed an entirely new
approach called the Discrete Hardy-Littlewood method. For the single
exponential sum, its sharpest result says that

EF,I∗ �M1/2T 32/205+ε ,

provided that (1) is true for j = 2, 3, 4 - however, under the restriction
that the parameters satisfy

T 141/328+ε �M � T 181/328 . (2)

In this talk it is described how both types of results can be com-
bined to obtain sharp bounds for the single exponential sum. Under
the conditions just stated, apart from (2), it can be proved that

M−εEF,I∗ �M
1
2 T

32
205 + T

751
1968 + M

871
1086 + M T−1/2 .



Applying the differencing lemma once, one obtains

M−εEF,I∗ �M
679
948 T

16
237 + M

1
2 T

751
5438 + M

1957
2172 + M T−1/4 ,

under the condition that (1) is true for j = 3, 4, 5. Again, the B-step
can be iterated.

Finally, we mention a few applications; see also [3].

References

[1] W.G. Nowak, Higher order derivative tests for exponential sums in-
corporating the Discrete Hardy-Littlewood method. Acta Math. Hun-
garica 134/1 (2012), 12-28.

[2] W.G. Nowak, Higher order derivative tests for exponential sums in-
corporating the Discrete Hardy-Littlewood method, II. In preparation.

[3] W.G. Nowak, A problem considered by Friedlander and Iwaniec and
the Discrete Hardy-Littlewood method. Math. Slovaca, to appear.


