Non-standard numeration systems: the algorithmic point of view

Edita Pelantová

We study algorithms for addition, multiplication and division on the set of numbers having finite representation in a positional numeration system defined by a base β in $\mathbb C$ and a finite digit set $\mathcal A$ of contiguous integers containing 0. For a fixed base β , we discuss the question of the alphabet allowing to perform addition in constant time independently of the length of representation of the summands. Such addition is a necessarry ingredient in on-line algorithms for multiplication and division. We focus on the properties of algebraic bases β which influence the efectivity of these on-line algorithms. Using the base $\beta = \frac{3+\sqrt{5}}{2}$ and the alphabet $\{-1,0,1\}$ we demonstrate that a system with an irrational base can be more suitable for computation than a system with an integer base.